90 resultados para variance shadow maps
Resumo:
The gene for agouti signaling protein (ASIP) is centrally involved in the expression of coat color traits in animals. The Mangalitza pig breed is characterized by a black-and-tan phenotype with black dorsal pigmentation and yellow or white ventral pigmentation. We investigated a Mangalitza x Piétrain cross and observed a coat color segregation pattern in the F2 generation that can be explained by virtue of two alleles at the MC1R locus and two alleles at the ASIP locus. Complete linkage of the black-and-tan phenotype to microsatellite alleles at the ASIP locus on SSC 17q21 was observed. Corroborated by the knowledge of similar mouse coat color mutants, it seems therefore conceivable that the black-and-tan pigmentation of Mangalitza pigs is caused by an ASIP allele a(t), which is recessive to the wild-type allele A. Toward positional cloning of the a(t) mutation, a 200-kb genomic BAC/PAC contig of this chromosomal region has been constructed and subsequently sequenced. Full-length ASIP cDNAs obtained by RACE differed in their 5' untranslated regions, whereas they shared a common open reading frame. Comparative sequencing of all ASIP exons and ASIP cDNAs between Mangalitza and Piétrain pigs did not reveal any differences associated with the coat color phenotype. Relative qRT-PCR analyses showed different dorsoventral skin expression intensities of the five ASIP transcripts in black-and-tan Mangalitza. The a(t) mutation is therefore probably a regulatory ASIP mutation that alters its dorsoventral expression pattern.
Resumo:
It is tempting to extrapolate research findings regarding the intensively studied Toxoplasma gondii to Neospora caninum. This is based on morphological and ultrastructural studies, the molecular phylogeny of both parasites, their wide host ranges in nature, their ability to invade many different cell types in vitro and the occurrence of homologous proteins in both species. However, as Innes and Mattsson point out, T. gondii is the most successful parasite worldwide, whereas N. caninum has a more limited host range. Thus, some of the most challenging questions are: (i) what is T. gondii doing that N. caninum is not doing, or is doing differently, that renders the former so much more successful? And (ii) can some of these features be exploited for the development of interventional tools to limit infection and pathology caused by N. caninum?
Resumo:
OBJECTIVES: This paper examines four different levels of possible variation in symptom reporting: occasion, day, person and family. DESIGN: In order to rule out effects of retrospection, concurrent symptom reporting was assessed prospectively using a computer-assisted self-report method. METHODS: A decomposition of variance in symptom reporting was conducted using diary data from families with adolescent children. We used palmtop computers to assess concurrent somatic complaints from parents and children six times a day for seven consecutive days. In two separate studies, 314 and 254 participants from 96 and 77 families, respectively, participated. A generalized multilevel linear models approach was used to analyze the data. Symptom reports were modelled using a logistic response function, and random effects were allowed at the family, person and day level, with extra-binomial variation allowed for on the occasion level. RESULTS: Substantial variability was observed at the person, day and occasion level but not at the family level. CONCLUSIONS: To explain symptom reporting in normally healthy individuals, situational as well as person characteristics should be taken into account. Family characteristics, however, would not help to clarify symptom reporting in all family members.
Resumo:
Bovine dilated cardiomyopathy (BDCMP) is a severe and terminal disease of the heart muscle observed in Holstein-Friesian cattle over the last 30 years. There is strong evidence for an autosomal recessive mode of inheritance for BDCMP. The objective of this study was to genetically map BDCMP, with the ultimate goal of identifying the causative mutation. A whole-genome scan using 199 microsatellite markers and one SNP revealed an assignment of BDCMP to BTA18. Fine-mapping on BTA18 refined the candidate region to the MSBDCMP06-BMS2785 interval. The interval containing the BDCMP locus was confirmed by multipoint linkage analysis using the software loki. The interval is about 6.7 Mb on the bovine genome sequence (Btau 3.1). The corresponding region of HSA19 is very gene-rich and contains roughly 200 genes. Although telomeric of the marker interval, TNNI3 is a possible positional and a functional candidate for BDCMP given its involvement in a human form of dilated cardiomyopathy. Sequence analysis of TNNI3 in cattle revealed no mutation in the coding sequence, but there was a G-to-A transition in intron 6 (AJ842179:c.378+315G>A). The analysis of this SNP using the study's BDCMP pedigree did not conclusively exclude TNNI3 as a candidate gene for BDCMP. Considering the high density of genes on the homologous region of HSA19, further refinement of the interval on BTA18 containing the BDCMP locus is needed.
Resumo:
Drosophila mutants have played an important role in elucidating the physiologic function of genes. Large-scale projects have succeeded in producing mutations in a large proportion of Drosophila genes. Many mutant fly lines have also been produced through the efforts of individual laboratories over the past century. In an effort to make some of these mutants more useful to the research community, we systematically mapped a large number of mutations affecting genes in the proximal half of chromosome arm 2L to more precisely defined regions, defined by deficiency intervals, and, when possible, by individual complementation groups. To further analyze regions 36 and 39-40, we produced 11 new deficiencies with gamma irradiation, and we constructed 6 new deficiencies in region 30-33, using the DrosDel system. trans-heterozygous combinations of deficiencies revealed 5 additional functions, essential for viability or fertility.
Resumo:
INTRODUCTION: Ultra-high-field whole-body systems (7.0 T) have a high potential for future human in vivo magnetic resonance imaging (MRI). In musculoskeletal MRI, biochemical imaging of articular cartilage may benefit, in particular. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping have shown potential at 3.0 T. Although dGEMRIC, allows the determination of the glycosaminoglycan content of articular cartilage, T2 mapping is a promising tool for the evaluation of water and collagen content. In addition, the evaluation of zonal variation, based on tissue anisotropy, provides an indicator of the nature of cartilage ie, hyaline or hyaline-like articular cartilage.Thus, the aim of our study was to show the feasibility of in vivo dGEMRIC, and T2 and T2* relaxation measurements, at 7.0 T MRI; and to evaluate the potential of T2 and T2* measurements in an initial patient study after matrix-associated autologous chondrocyte transplantation (MACT) in the knee. MATERIALS AND METHODS: MRI was performed on a whole-body 7.0 T MR scanner using a dedicated circular polarization knee coil. The protocol consisted of an inversion recovery sequence for dGEMRIC, a multiecho spin-echo sequence for standard T2 mapping, a gradient-echo sequence for T2* mapping and a morphologic PD SPACE sequence. Twelve healthy volunteers (mean age, 26.7 +/- 3.4 years) and 4 patients (mean age, 38.0 +/- 14.0 years) were enrolled 29.5 +/- 15.1 months after MACT. For dGEMRIC, 5 healthy volunteers (mean age, 32.4 +/- 11.2 years) were included. T1 maps were calculated using a nonlinear, 2-parameter, least squares fit analysis. Using a region-of-interest analysis, mean cartilage relaxation rate was determined as T1 (0) for precontrast measurements and T1 (Gd) for postcontrast gadopentate dimeglumine [Gd-DTPA(2-)] measurements. T2 and T2* maps were obtained using a pixelwise, monoexponential, non-negative least squares fit analysis; region-of-interest analysis was carried out for deep and superficial cartilage aspects. Statistical evaluation was performed by analyses of variance. RESULTS: Mean T1 (dGEMRIC) values for healthy volunteers showed slightly different results for femoral [T1 (0): 1259 +/- 277 ms; T1 (Gd): 683 +/- 141 ms] compared with tibial cartilage [T1 (0): 1093 +/- 281 ms; T1 (Gd): 769 +/- 150 ms]. Global mean T2 relaxation for healthy volunteers showed comparable results for femoral (T2: 56.3 +/- 15.2 ms; T2*: 19.7 +/- 6.4 ms) and patellar (T2: 54.6 +/- 13.0 ms; T2*: 19.6 +/- 5.2 ms) cartilage, but lower values for tibial cartilage (T2: 43.6 +/- 8.5 ms; T2*: 16.6 +/- 5.6 ms). All healthy cartilage sites showed a significant increase from deep to superficial cartilage (P < 0.001). Within healthy cartilage sites in MACT patients, adequate values could be found for T2 (56.6 +/- 13.2 ms) and T2* (18.6 +/- 5.3 ms), which also showed a significant stratification. Within cartilage repair tissue, global mean values showed no difference, with 55.9 +/- 4.9 ms for T2 and 16.2 +/- 6.3 ms for T2*. However, zonal assessment showed only a slight and not significant increase from deep to superficial cartilage (T2: P = 0.174; T2*: P = 0.150). CONCLUSION: In vivo T1 dGEMRIC assessment in healthy cartilage, and T2 and T2* mapping in healthy and reparative articular cartilage, seems to be possible at 7.0 T MRI. For T2 and T2*, zonal variation of articular cartilage could also be evaluated at 7.0 T. This zonal assessment of deep and superficial cartilage aspects shows promising results for the differentiation of healthy and affected articular cartilage. In future studies, optimized protocol selection, and sophisticated coil technology, together with increased signal at ultra-high-field MRI, may lead to advanced biochemical cartilage imaging.
Resumo:
PURPOSE: To prospectively compare cartilage T2 values after microfracture therapy (MFX) and matrix-associated autologous chondrocyte transplantation (MACT) repair procedures. MATERIALS AND METHODS: The study had institutional review board approval by the ethics committee of the Medical University of Vienna; informed consent was obtained. Twenty patients who underwent MFX or MACT (10 in each group) were enrolled. For comparability, patients of each group were matched by mean age (MFX, 40.0 years +/- 15.4 [standard deviation]; MACT, 41.0 years +/- 8.9) and postoperative interval (MFX, 28.6 months +/- 5.2; MACT, 27.4 months +/- 13.1). Magnetic resonance (MR) imaging was performed with a 3-T MR imager, and T2 maps were calculated from a multiecho spin-echo measurement. Global, as well as zonal, quantitative T2 values were calculated within the cartilage repair area and within cartilage sites determined to be morphologically normal articular cartilage. Additionally, with consideration of the zonal organization, global regions of interest were subdivided into deep and superficial areas. Differences between cartilage sites and groups were calculated by using a three-way analysis of variance. RESULTS: Quantitative T2 assessment of normal native hyaline cartilage showed similar results for all patients and a significant trend of increasing T2 values from deep to superficial zones (P < .05). In cartilage repair areas after MFX, global mean T2 was significantly reduced (P < .05), whereas after MACT, mean T2 was not reduced (P > or = .05). For zonal variation, repair tissue after MFX showed no significant trend between different depths (P > or = .05), in contrast to repair tissue after MACT, in which a significant increase from deep to superficial zones (P < .05) could be observed. CONCLUSION: Quantitative T2 mapping seems to reflect differences in repair tissues formed after two surgical cartilage repair procedures. (c) RSNA, 2008.
Resumo:
Global transcriptomic and proteomic profiling platforms have yielded important insights into the complex response to ionizing radiation (IR). Nonetheless, little is known about the ways in which small cellular metabolite concentrations change in response to IR. Here, a metabolomics approach using ultraperformance liquid chromatography coupled with electrospray time-of-flight mass spectrometry was used to profile, over time, the hydrophilic metabolome of TK6 cells exposed to IR doses ranging from 0.5 to 8.0 Gy. Multivariate data analysis of the positive ions revealed dose- and time-dependent clustering of the irradiated cells and identified certain constituents of the water-soluble metabolome as being significantly depleted as early as 1 h after IR. Tandem mass spectrometry was used to confirm metabolite identity. Many of the depleted metabolites are associated with oxidative stress and DNA repair pathways. Included are reduced glutathione, adenosine monophosphate, nicotinamide adenine dinucleotide, and spermine. Similar measurements were performed with a transformed fibroblast cell line, BJ, and it was found that a subset of the identified TK6 metabolites were effective in IR dose discrimination. The GEDI (Gene Expression Dynamics Inspector) algorithm, which is based on self-organizing maps, was used to visualize dynamic global changes in the TK6 metabolome that resulted from IR. It revealed dose-dependent clustering of ions sharing the same trends in concentration change across radiation doses. "Radiation metabolomics," the application of metabolomic analysis to the field of radiobiology, promises to increase our understanding of cellular responses to stressors such as radiation.