33 resultados para tube furnace
Resumo:
ROTEM® is considered a helpful point-of-care device to monitor blood coagulation in emergency situations. Centrally performed analysis is desirable but rapid transport of blood samples is an important prerequisite. The effect of acceleration forces on sample transport through a pneumatic tube system on ROTEM® should be tested at each institution to exclude a pre-analytical influence. The aims of the present work were: (i) to investigate the effect of pneumatic tube transport on ROTEM® parameters; (ii) to compare blood sample transport via pneumatic tube vs. manual transportation; and (iii) to determine the effect of acceleration forces on ROTEM® parameters.
Resumo:
OBJECTIVE: The purpose of this study was to evaluate in a phantom study the effect of patient size on radiation dose for abdominal MDCT with automatic tube current modulation. MATERIALS AND METHODS: One or two 4-cm-thick circumferential layers of fat-equivalent material were added to the abdomen of an anthropomorphic phantom to simulate patients of three sizes: small (cross-sectional dimensions, 18 x 22 cm), average size (26 x 30 cm), and oversize (34 x 38 cm). Imaging was performed with a 64-MDCT scanner with combined z-axis and xy-axis tube current modulation according to two protocols: protocol A had a noise index of 12.5 H, and protocol B, 15.0 H. Radiation doses to three abdominal organs and the skin were assessed. Image noise also was measured. RESULTS: Despite increasing patient size, the image noise measured was similar for protocol A (range, 11.7-12.2 H) and protocol B (range, 13.9-14.8 H) (p > 0.05). With the two protocols, in comparison with the dose of the small patient, the abdominal organ doses of the average-sized patient and the oversized patient increased 161.5-190.6%and 426.9-528.1%, respectively (p < 0.001). The skin dose increased as much as 268.6% for the average-sized patient and 816.3% for the oversized patient compared with the small patient (p < 0.001). CONCLUSION: Oversized patients undergoing abdominal MDCT with tube current modulation receive significantly higher doses than do small patients. The noise index needs to be adjusted to the body habitus to ensure dose efficiency.
Resumo:
PURPOSE: To prospectively evaluate, for the depiction of simulated hypervascular liver lesions in a phantom, the effect of a low tube voltage, high tube current computed tomographic (CT) technique on image noise, contrast-to-noise ratio (CNR), lesion conspicuity, and radiation dose. MATERIALS AND METHODS: A custom liver phantom containing 16 cylindric cavities (four cavities each of 3, 5, 8, and 15 mm in diameter) filled with various iodinated solutions to simulate hypervascular liver lesions was scanned with a 64-section multi-detector row CT scanner at 140, 120, 100, and 80 kVp, with corresponding tube current-time product settings at 225, 275, 420, and 675 mAs, respectively. The CNRs for six simulated lesions filled with different iodinated solutions were calculated. A figure of merit (FOM) for each lesion was computed as the ratio of CNR2 to effective dose (ED). Three radiologists independently graded the conspicuity of 16 simulated lesions. An anthropomorphic phantom was scanned to evaluate the ED. Statistical analysis included one-way analysis of variance. RESULTS: Image noise increased by 45% with the 80-kVp protocol compared with the 140-kVp protocol (P < .001). However, the lowest ED and the highest CNR were achieved with the 80-kVp protocol. The FOM results indicated that at a constant ED, a reduction of tube voltage from 140 to 120, 100, and 80 kVp increased the CNR by factors of at least 1.6, 2.4, and 3.6, respectively (P < .001). At a constant CNR, corresponding reductions in ED were by a factor of 2.5, 5.5, and 12.7, respectively (P < .001). The highest lesion conspicuity was achieved with the 80-kVp protocol. CONCLUSION: The CNR of simulated hypervascular liver lesions can be substantially increased and the radiation dose reduced by using an 80-kVp, high tube current CT technique.
Resumo:
OBJECTIVES: The aim of this phantom study was to evaluate the contrast-to-noise ratio (CNR) in pulmonary computed tomography (CT)-angiography for 300 and 400 mg iodine/mL contrast media using variable x-ray tube parameters and patient sizes. We also analyzed the possible strategies of dose reduction in patients with different sizes. MATERIALS AND METHODS: The segmental pulmonary arteries were simulated by plastic tubes filled with 1:30 diluted solutions of 300 and 400 mg iodine/mL contrast media in a chest phantom mimicking thick, intermediate, and thin patients. Volume scanning was done with a CT scanner at 80, 100, 120, and 140 kVp. Tube current-time products (mAs) varied between 50 and 120% of the optimal value given by the built-in automatic dose optimization protocol. Attenuation values and CNR for both contrast media were evaluated and compared with the volume CT dose index (CTDI(vol)). Figure of merit, calculated as CNR/CTDIvol, was used to quantify image quality improvement per exposure risk to the patient. RESULTS: Attenuation of iodinated contrast media increased both with decreasing tube voltage and patient size. A CTDIvol reduction by 44% was achieved in the thin phantom with the use of 80 instead of 140 kVp without deterioration of CNR. Figure of merit correlated with kVp in the thin phantom (r = -0.897 to -0.999; P < 0.05) but not in the intermediate and thick phantoms (P = 0.09-0.71), reflecting a decreasing benefit of tube voltage reduction on image quality as the thickness of the phantom increased. Compared with the 300 mg iodine/mL concentration, the same CNR for 400 mg iodine/mL contrast medium was achieved at a lower CTDIvol by 18 to 40%, depending on phantom size and applied tube voltage. CONCLUSIONS: Low kVp protocols for pulmonary embolism are potentially advantageous especially in thin and, to a lesser extent, in intermediate patients. Thin patients profit from low voltage protocols preserving a good CNR at a lower exposure. The use of 80 kVp in obese patients may be problematic because of the limitation of the tube current available, reduced CNR, and high skin dose. The high CNR of the 400 mg iodine/mL contrast medium together with lower tube energy and/or current can be used for exposure reduction.
Resumo:
To analyze the detection of endoleaks with low-tube-voltage computed tomographic (CT) angiography.
Resumo:
RATIONALE AND OBJECTIVES: To evaluate the effect of automatic tube current modulation on radiation dose and image quality for low tube voltage computed tomography (CT) angiography. MATERIALS AND METHODS: An anthropomorphic phantom was scanned with a 64-section CT scanner using following tube voltages: 140 kVp (Protocol A), 120 kVp (Protocol B), 100 kVp (Protocol C), and 80 kVp (Protocol D). To achieve similar noise, combined z-axis and xy-axes automatic tube current modulation was applied. Effective dose (ED) for the four tube voltages was assessed. Three plastic vials filled with different concentrations of iodinated solution were placed on the phantom's abdomen to obtain attenuation measurements. The signal-to-noise ratio (SNR) was calculated and a figure of merit (FOM) for each iodinated solution was computed as SNR(2)/ED. RESULTS: The ED was kept similar for the four different tube voltages: (A) 5.4 mSv +/- 0.3, (B) 4.1 mSv +/- 0.6, (C) 3.9 mSv +/- 0.5, and (D) 4.2 mSv +/- 0.3 (P > .05). As the tube voltage decreased from 140 to 80 kVp, image noise was maintained (range, 13.8-14.9 HU) (P > .05). SNR increased as the tube voltage decreased, with an overall gain of 119% for the 80-kVp compared to the 140-kVp protocol (P < .05). The FOM results indicated that with a reduction of the tube voltage from 140 to 120, 100, and 80 kVp, at constant SNR, ED was reduced by a factor of 2.1, 3.3, and 5.1, respectively, (P < .001). CONCLUSIONS: As tube voltage decreases, automatic tube current modulation for CT angiography yields either a significant increase in image quality at constant radiation dose or a significant decrease in radiation dose at a constant image quality.
Resumo:
Plant cell expansion is controlled by a fine-tuned balance between intracellular turgor pressure, cell wall loosening and cell wall biosynthesis. To understand these processes, it is important to gain in-depth knowledge of cell wall mechanics. Pollen tubes are tip-growing cells that provide an ideal system to study mechanical properties at the single cell level. With the available approaches it was not easy to measure important mechanical parameters of pollen tubes, such as the elasticity of the cell wall. We used a cellular force microscope (CFM) to measure the apparent stiffness of lily pollen tubes. In combination with a mechanical model based on the finite element method (FEM), this allowed us to calculate turgor pressure and cell wall elasticity, which we found to be around 0.3 MPa and 20–90 MPa, respectively. Furthermore, and in contrast to previous reports, we showed that the difference in stiffness between the pollen tube tip and the shank can be explained solely by the geometry of the pollen tube. CFM, in combination with an FEM-based model, provides a powerful method to evaluate important mechanical parameters of single, growing cells. Our findings indicate that the cell wall of growing pollen tubes has mechanical properties similar to rubber. This suggests that a fully turgid pollen tube is a relatively stiff, yet flexible cell that can react very quickly to obstacles or attractants by adjusting the direction of growth on its way through the female transmitting tissue.
Resumo:
The Hamamatsu R11410 photomultiplier, a tube of 3" diameter and with a very low intrinsic radioactivity, is an interesting light sensor candidate for future experiments using liquid xenon (LXe) as target for direct dark matter searches. We have performed several experiments with the R11410 with the goal of testing its performance in environments similar to a dark matter detector setup. In particular, we examined its long-term behavior and stability in LXe and its response in various electric field configurations.
Resumo:
Resting endothelial cells express the small proteoglycan biglycan, whereas sprouting endothelial cells also synthesize decorin, a related proteoglycan. Here we show that decorin is expressed in endothelial cells in human granulomatous tissue. For in vitro investigations, the human endothelium-derived cell line, EA.hy 926, was cultured for 6 or more days in the presence of 1% fetal calf serum on top of or within floating collagen lattices which were also populated by a small number of rat fibroblasts. Endothelial cells aligned in cord-like structures and developed cavities that were surrounded by human decorin. About 14% and 20% of endothelial cells became apoptotic after 6 and 12 days of co-culture, respectively. In the absence of fibroblasts, however, the extent of apoptosis was about 60% after 12 days, and cord-like structures were not formed nor could decorin production be induced. This was also the case when lattices populated by EA.hy 926 cells were maintained under one of the following conditions: 1) 10% fetal calf serum; 2) fibroblast-conditioned media; 3) exogenous decorin; or 4) treatment with individual growth factors known to be involved in angiogenesis. The mechanism(s) by which fibroblasts induce an angiogenic phenotype in EA.hy 926 cells is (are) not known, but a causal relationship between decorin expression and endothelial cell phenotype was suggested by transducing human decorin cDNA into EA.hy 926 cells using a replication-deficient adenovirus. When the transduced cells were cultured in collagen lattices, there was no requirement of fibroblasts for the formation of capillary-like structures and apoptosis was reduced. Thus, decorin expression seems to be of special importance for the survival of EA.hy 926 cells as well as for cord and tube formation in this angiogenesis model.