40 resultados para time-domain NMR


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrated all-fiber amplification of 11 ps pulses from a gain-switched laser diode at 1064 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 µW of fiber-coupled average output power. For the low output pulse energy of 325 fJ we have designed a multi-stage core pumped pre-amplifier in order to keep the contribution of undesired amplified spontaneous emission as low as possible. By using a novel time-domain approach for determining the power spectral density ratio (PSD) of signal to noise, we identified the optimal working point for our pre-amplifier. After the pre-amplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we reached a total gain of 73 dB, resulting in pulse energies of >5.6 µJ and peak powers of >0.5 MW. The average PSD-ratio of signal to noise we determined to be 18/1 at the output of the final amplification stage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RATIONALE: Both psychotropic drugs and mental disorders have typical signatures in quantitative electroencephalography (EEG). Previous studies found that some psychotropic drugs had EEG effects opposite to the EEG effects of the mental disorders treated with these drugs (key-lock principle). OBJECTIVES: We performed a placebo-controlled pharmaco-EEG study on two conventional antipsychotics (chlorpromazine and haloperidol) and four atypical antipsychotics (olanzapine, perospirone, quetiapine, and risperidone) in healthy volunteers. We investigated differences between conventional and atypical drug effects and whether the drug effects were compatible with the key-lock principle. METHODS: Fourteen subjects underwent seven EEG recording sessions, one for each drug (dosage equivalent of 1 mg haloperidol). In a time-domain analysis, we quantified the EEG by identifying clusters of transiently stable EEG topographies (microstates). Frequency-domain analysis used absolute power across electrodes and the location of the center of gravity (centroid) of the spatial distribution of power in different frequency bands. RESULTS: Perospirone increased duration of a microstate class typically shortened in schizophrenics. Haloperidol increased mean microstate duration of all classes, increased alpha 1 and beta 1 power, and tended to shift the beta 1 centroid posterior. Quetiapine decreased alpha 1 power and shifted the centroid anterior in both alpha bands. Olanzapine shifted the centroid anterior in alpha 2 and beta 1. CONCLUSIONS: The increased microstate duration under perospirone and haloperidol was opposite to effects previously reported in schizophrenic patients, suggesting a key-lock mechanism. The opposite centroid changes induced by olanzapine and quetiapine compared to haloperidol might characterize the difference between conventional and atypical antipsychotics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Safe disposal of toxic wastes in geologic formations requires minimal water and gas movement in the vicinity of storage areas, Ventilation of repository tunnels or caverns built in solid rock can desaturate the near field up to a distance of meters from the rock surface, even when the surrounding geological formation is saturated and under hydrostatic pressures. A tunnel segment at the Grimsel test site located in the Aare granite of the Bernese Alps (central Switzerland) has been subjected to a resaturation and, subsequently, to a controlled desaturation, Using thermocouple psychrometers (TP) and time domain reflectometry (TDR), the water potentials psi and water contents theta were measured within the unsaturated granodiorite matrix near the tunnel wall at depths between 0 and 160 cm. During the resaturation the water potentials in the first 30 cm from the rock surface changed within weeks from values of less than -1.5 MPa to near saturation. They returned to the negative initial values during desaturation, The dynamics of this saturation-desaturation regime could be monitored very sensitively using the thermocouple psychrometers, The TDR measurements indicated that water contents changed dose to the surface, but at deeper installation depths the observed changes were within the experimental noise. The field-measured data of the desaturation cycle were used to test the predictive capabilities of the hydraulic parameter functions that were derived from the water retention characteristics psi(theta) determined in the laboratory. A depth-invariant saturated hydraulic conductivity k(s) = 3.0 x 10(-11) m s(-1) was estimated from the psi(t) data at all measurement depths, using the one-dimensional, unsaturated water flow and transport model HYDRUS Vogel er al., 1996, For individual measurement depths, the estimated k(s) varied between 9.8 x 10(-12) and 6.1 x 10(-11) The fitted k(s) values fell within the range of previously estimated k(s) for this location and led to a satisfactory description of the data, even though the model did not include transport of water vapor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A water desaturation zone develops around a tunnel in water-saturated rock when the evaporative water loss at the rock surface is larger than the water flow from the surrounding saturated region of restricted permeability. We describe the methods with which such water desaturation processes in rock materials can be quantified. The water retention characteristic theta(psi) of crystalline rock samples was determined with a pressure membrane apparatus. The negative water potential, identical to the capillary pressure, psi, below the tensiometric range (psi < -0.1 MPa) can be measured with thermocouple psychrometers (TP), and the volumetric water contents, theta, by means of time domain reflectometry (TDR). These standard methods were adapted for measuring the water status in a macroscopically unfissured granodiorite with a total porosity of approximately 0.01. The measured water retention curve of granodiorite samples from the Grimsel test site (central Switzerland) exhibits a shape which is typical for bimodal pore size distributions. The measured bimodality is probably an artifact of a large surface ratio of solid/voids. The thermocouples were installed without a metallic screen using the cavity drilled into the granodiorite as a measuring chamber. The water potentials observed in a cylindrical granodiorite monolith ranged between -0.1 and -3.0 MPa; those near the wall in a ventilated tunnel between -0.1 and -2.2 MPa. Two types of three-rod TDR Probes were used, one as a depth probe inserted into the rock, the other as a surface probe using three copper stripes attached to the surface for detecting water content changes in the rock-to-air boundary. The TDR signal was smoothed with a low-pass filter, and the signal length determined based on the first derivative of the trace. Despite the low porosity of crystalline rock these standard methods are applicable to describe the unsaturated zone in solid rock and may also be used in other consolidated materials such as concrete.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Several parameters of heart rate variability (HRV) have been shown to predict the risk of sudden cardiac death (SCD) in cardiac patients. There is consensus that risk prediction is increased when measuring HRV during specific provocations such as orthostatic challenge. For the first time, we provide data on reproducibility of such a test in patients with a history of acute coronary syndrome. METHODS: Sixty male patients (65+/-8years) with a history of acute coronary syndrome on stable medication were included. HRV was measured in supine (5min) and standing (5min) position on 2 occasions separated by two weeks. For risk assessment relevant time-domain [standard deviation of all R-R intervals (SDNN) and root mean squared standard differences between adjacent R-R intervals (RMSSD)], frequency domain [low-frequency power (LF), high-frequency power (HF) and LF/HF power ratio] and short-term fractal scaling component (DF1) were computed. Absolute reproducibility was assessed with the standard errors of the mean (SEM) and 95% limits of random variation, and relative reproducibility by the intraclass correlation coefficient (ICC). RESULTS: We found comparable SEMs and ICCs in supine position and after an orthostatic challenge test. All ICCs were good to excellent (ICCs between 0.636 and 0.869). CONCLUSIONS: Reproducibility of HRV parameters during orthostatic challenge is good and comparable with supine position.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The distribution processes of chlorin e6 (CE) and monoaspartyl-chlorin e6 (MACE) between the outer and inner phospholipid monolayers of 1,2-dioleoyl-phosphatidylcholine (DOPC) vesicles were monitored by 1H NMR spectroscopy through analysis of chemical shifts and line widths of the DOPC vesicle resonances. Chlorin adsorption to the outer vesicle monolayer induced changes in the DOPC 1H NMR spectrum. Most pronounced was a split of the N-methyl choline resonance, allowing for separate analysis of inner and outer vesicle layers. Transbilayer distribution of the chlorin compounds was indicated by time-dependent characteristic spectral changes of the DOPC resonances. Kinetic parameters for the flip-flop processes, that is, half-lives and rate constants, were obtained from the experimental data points. In comparison to CE, MACE transbilayer movement was significantly reduced, with MACE remaining more or less attached to the outer membrane layer. The distribution coefficients for CE and MACE between the vesicular and aqueous phase were determined. Both CE and MACE exhibited a high affinity for the vesicular phase. For CE, a positive correlation was found between transfer rate and increasing molar ratio CE/DOPC. Enhanced membrane rigidity induced by increasing amounts of cholesterol into the model membrane was accompanied by a decrease of CE flip-flop rates across the membrane. The present study shows that the movement of porphyrins across membranes can efficiently be investigated by 1H NMR spectroscopy and that small changes in porphyrin structure can have large effects on membrane kinetics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10c–30c, n = 21, corresponding to iterative dilutions of 100−10–100−30), sulfur (13x–30x, n = 18, 10−13–10−30), and copper sulfate (11c–30c, n = 20, 100−11–100−30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations thus may exhibit specific physicochemical properties that need to be determined in detail in future investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoarticular allograft transplantation is a popular treatment method in wide surgical resections with large defects. For this reason hospitals are building bone data banks. Performing the optimal allograft selection on bone banks is crucial to the surgical outcome and patient recovery. However, current approaches are very time consuming hindering an efficient selection. We present an automatic method based on registration of femur bones to overcome this limitation. We introduce a new regularization term for the log-domain demons algorithm. This term replaces the standard Gaussian smoothing with a femur specific polyaffine model. The polyaffine femur model is constructed with two affine (femoral head and condyles) and one rigid (shaft) transformation. Our main contribution in this paper is to show that the demons algorithm can be improved in specific cases with an appropriate model. We are not trying to find the most optimal polyaffine model of the femur, but the simplest model with a minimal number of parameters. There is no need to optimize for different number of regions, boundaries and choice of weights, since this fine tuning will be done automatically by a final demons relaxation step with Gaussian smoothing. The newly developed synthesis approach provides a clear anatomically motivated modeling contribution through the specific three component transformation model, and clearly shows a performance improvement (in terms of anatomical meaningful correspondences) on 146 CT images of femurs compared to a standard multiresolution demons. In addition, this simple model improves the robustness of the demons while preserving its accuracy. The ground truth are manual measurements performed by medical experts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software must be constantly adapted due to evolving domain knowledge and unanticipated requirements changes. To adapt a system at run-time we need to reflect on its structure and its behavior. Object-oriented languages introduced reflection to deal with this issue, however, no reflective approach up to now has tried to provide a unified solution to both structural and behavioral reflection. This paper describes Albedo, a unified approach to structural and behavioral reflection. Albedo is a model of fined-grained unanticipated dynamic structural and behavioral adaptation. Instead of providing reflective capabilities as an external mechanism we integrate them deeply in the environment. We show how explicit meta-objects allow us to provide a range of reflective features and thereby evolve both application models and environments at run-time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cupiennius salei single insulin-like growth factor-binding domain protein (SIBD-1), which exhibits an IGFBP N-terminal domain-like profile, was identified in the hemocytes of the spider C. salei. SIBD-1 was purified by RP-HPLC and the sequence determined by a combination of Edman degradation and 5'-3'- RACE PCR. The peptide (8676.08 Da) is composed of 78 amino acids, contains six intrachain disulphide bridges and carries a modified Thr residue at position 2. SIBD-1 mRNA expression was detected by quantitative real-time PCR mainly in hemocytes, but also in the subesophageal nerve mass and muscle. After infection, the SIBD-1 content in the hemocytes decreases and, simultaneously, the temporal SIBD-1 expression seems to be down-regulated. Two further peptides, SIBD-2 and IGFBP-rP1, also exhibiting IGFBP N-terminal domain variants with unknown functions, were identified on cDNA level in spider hemocytes and venom glands. We conclude that SIBD-1 may play an important role in the immune system of spiders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane interactions of porphyrinic photosensitizers (PSs) are known to play a crucial role for PS efficiency in photodynamic therapy (PDT). In the current paper, the interactions between 15 different porphyrinic PSs with various hydrophilic/lipophilic properties and phospholipid bilayers were probed by NMR spectroscopy. Unilamellar vesicles consisting of dioleoyl-phosphatidyl-choline (DOPC) were used as membrane models. PS-membrane interactions were deduced from analysis of the main DOPC (1)H-NMR resonances (choline and lipid chain signals). Initial membrane adsorption of the PSs was indicated by induced changes to the DOPC choline signal, i.e. a split into inner and outer choline peaks. Based on this parameter, the PSs could be classified into two groups, Type-A PSs causing a split and the Type-B PSs causing no split. A further classification into two subgroups each, A1, A2 and B1, B2 was based on the observed time-dependent changes of the main DOPC NMR signals following initial PS adsorption. Four different time-correlated patterns were found indicating different levels and rates of PS penetration into the hydrophobic membrane interior. The type of interaction was mainly affected by the amphiphilicity and the overall lipophilicity of the applied PS structures. In conclusion, the NMR data provided valuable structural and dynamic insights into the PS-membrane interactions which allow deriving the structural constraints for high membrane affinity and high membrane penetration of a given PS. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of the time interval from death (post-mortem interval, PMI) has an enormous legal, criminological and psychological impact. Aiming to find an objective method for the determination of PMIs in forensic medicine, 1H-MR spectroscopy (1H-MRS) was used in a sheep head model to follow changes in brain metabolite concentrations after death. Following the characterization of newly observed metabolites (Ith et al., Magn. Reson. Med. 2002; 5: 915-920), the full set of acquired spectra was analyzed statistically to provide a quantitative estimation of PMIs with their respective confidence limits. In a first step, analytical mathematical functions are proposed to describe the time courses of 10 metabolites in the decomposing brain up to 3 weeks post-mortem. Subsequently, the inverted functions are used to predict PMIs based on the measured metabolite concentrations. Individual PMIs calculated from five different metabolites are then pooled, being weighted by their inverse variances. The predicted PMIs from all individual examinations in the sheep model are compared with known true times. In addition, four human cases with forensically estimated PMIs are compared with predictions based on single in situ MRS measurements. Interpretation of the individual sheep examinations gave a good correlation up to 250 h post-mortem, demonstrating that the predicted PMIs are consistent with the data used to generate the model. Comparison of the estimated PMIs with the forensically determined PMIs in the four human cases shows an adequate correlation. Current PMI estimations based on forensic methods typically suffer from uncertainties in the order of days to weeks without mathematically defined confidence information. In turn, a single 1H-MRS measurement of brain tissue in situ results in PMIs with defined and favorable confidence intervals in the range of hours, thus offering a quantitative and objective method for the determination of PMIs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of reanalysis-driven Canadian Regional Climate Model, version 5 (CRCM5) in reproducing the present climate over the North American COordinated Regional climate Downscaling EXperiment domain for the 1989–2008 period has been assessed in comparison with several observation-based datasets. The model reproduces satisfactorily the near-surface temperature and precipitation characteristics over most part of North America. Coastal and mountainous zones remain problematic: a cold bias (2–6 °C) prevails over Rocky Mountains in summertime and all year-round over Mexico; winter precipitation in mountainous coastal regions is overestimated. The precipitation patterns related to the North American Monsoon are well reproduced, except on its northern limit. The spatial and temporal structure of the Great Plains Low-Level Jet is well reproduced by the model; however, the night-time precipitation maximum in the jet area is underestimated. The performance of CRCM5 was assessed against earlier CRCM versions and other RCMs. CRCM5 is shown to have been substantially improved compared to CRCM3 and CRCM4 in terms of seasonal mean statistics, and to be comparable to other modern RCMs.