26 resultados para taxonomy of innovation
Resumo:
Principles and guidelines are presented to ensure a solid scientific standard of papers dealing with the taxonomy of taxa of Pasteurellaceae Pohl 1981. The classification of the Pasteurellaceae is in principle based on a polyphasic approach. DNA sequencing of certain genes is very important for defining the borders of a taxon. However, the characteristics that are common to all members of the taxon and which might be helpful for separating it from related taxa must also be identified. Descriptions have to be based on as many strains as possible (inclusion of at least five strains is highly desirable), representing different sources with respect to geography and ecology, to allow proper characterization both phenotypically and genotypically, to establish the extent of diversity of the cluster to be named. A genus must be monophyletic based on 16S rRNA gene sequence-based phylogenetic analysis. Only in very rare cases is it acceptable that monophyly can not be achieved by 16S rRNA gene sequence comparison. Recently, the monophyly of genera has been confirmed by sequence comparison of housekeeping genes. In principle, a new genus should be recognized by a distinct phenotype, and characters that separate the new genus from its neighbours should be given clearly. Due to the overall importance of accurate classification of species, at least two genotypic methods are needed to show coherence and for separation at the species level. The main criterion for the classification of a novel species is that it forms a monophyletic group based on 16S rRNA gene sequence-based phylogenetic analysis. However, some groups might also include closely related species. In these cases, more sensitive tools for genetic recognition of species should be applied, such as DNA-DNA hybridizations. The comparison of housekeeping gene sequences has recently been used for genotypic definition of species. In order to separate species, phenotypic characters must also be identified to recognize them, and at least two phenotypic differences from existing species should be identified if possible. We recommend the use of the subspecies category only for subgroups associated with disease or similar biological characteristics. At the subspecies level, the genotypic groups must always be nested within the boundaries of an existing species. Phenotypic cohesion must be documented at the subspecies level and separation between subspecies and related species must be fully documented, as well as association with particular disease and host. An overview of methods previously used to characterize isolates of the Pasteurellaceae has been given. Genotypic and phenotypic methods are separated in relation to tests for investigating diversity and cohesion and to separate taxa at the level of genus as well as species and subspecies.
Resumo:
Multilocus sequence analysis (MLSA) based on recN, rpoA and thdF genes was done on more than 30 species of the family Enterobacteriaceae with a focus on Cronobacter and the related genus Enterobacter. The sequences provide valuable data for phylogenetic, taxonomic and diagnostic purposes. Phylogenetic analysis showed that the genus Cronobacter forms a homogenous cluster related to recently described species of Enterobacter, but distant to other species of this genus. Combining sequence information on all three genes is highly representative for the species' %GC-content used as taxonomic marker. Sequence similarity of the three genes and even of recN alone can be used to extrapolate genetic similarities between species of Enterobacteriaceae. Finally, the rpoA gene sequence, which is the easiest one to determine, provides a powerful diagnostic tool to identify and differentiate species of this family. The comparative analysis gives important insights into the phylogeny and genetic relatedness of the family Enterobacteriaceae and will serve as a basis for further studies and clarifications on the taxonomy of this large and heterogeneous family.
Resumo:
The Mycoplasma mycoides cluster consists of six pathogenic mycoplasmas causing disease in ruminants, which share many genotypic and phenotypic traits. The M. mycoides cluster comprises five recognized taxa: Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC), M. mycoides subsp. mycoides Large Colony (MmmLC), M. mycoides subsp. capri (Mmc), Mycoplasma capricolum subsp. capricolum (Mcc) and M. capricolum subsp. capripneumoniae (Mccp). The group of strains known as Mycoplasma sp. bovine group 7 of Leach (MBG7) has remained unassigned, due to conflicting data obtained by different classification methods. In the present paper, all available data, including recent phylogenetic analyses, have been reviewed, resulting in a proposal for an emended taxonomy of this cluster: (i) the MBG7 strains, although related phylogenetically to M. capricolum, hold sufficient characteristic traits to be assigned as a separate species, i.e. Mycoplasma leachii sp. nov. (type strain, PG50(T) = N29(T) = NCTC 10133(T) = DSM 21131(T)); (ii) MmmLC and Mmc, which can only be distinguished by serological methods and are related more distantly to MmmSC, should be combined into a single subspecies, i.e. Mycoplasma mycoides subsp. capri, leaving M. mycoides subsp. mycoides (MmmSC) as the exclusive designation for the agent of contagious bovine pleuropneumonia. A taxonomic description of M. leachii sp. nov. and emended descriptions of M. mycoides subsp. mycoides and M. mycoides subsp. capri are presented. As a result of these emendments, the M. mycoides cluster will hereafter be composed of five taxa comprising three subclusters, which correspond to the M. mycoides subspecies, the M. capricolum subspecies and the novel species M. leachii.
Resumo:
Genetic relationships among bacterial strains belonging to the genus Aeromonas were inferred from 16S rRNA, gyrB and rpoB gene sequences. Twenty-eight type or collection strains of the recognized species or subspecies and 33 Aeromonas strains isolated from human and animal specimens as well as from environmental samples were included in the study. As reported previously, the 16S rRNA gene sequence is highly conserved within the genus Aeromonas, having only limited resolution for this very tight group of species. Analysis of a 1.1 kb gyrB sequence confirmed that this gene has high resolving power, with maximal interspecies divergence of 15.2 %. Similar results were obtained by sequencing only 517 bp of the rpoB gene, which showed maximal interspecies divergence of 13 %. The topologies of the gyrB- and rpoB-derived trees were similar. The results confirm the close relationship of species within the genus Aeromonas and show that a phylogenetic approach including several genes is suitable for improving the complicated taxonomy of the genus.
Resumo:
Sequences of the gene encoding the beta-subunit of the RNA polymerase (rpoB) were used to delineate the phylogeny of the family Pasteurellaceae. A total of 72 strains, including the type strains of the major described species as well as selected field isolates, were included in the study. Selection of universal rpoB-derived primers for the family allowed straightforward amplification and sequencing of a 560 bp fragment of the rpoB gene. In parallel, 16S rDNA was sequenced from all strains. The phylogenetic tree obtained with the rpoB sequences reflected the major branches of the tree obtained with the 16S rDNA, especially at the genus level. Only a few discrepancies between the trees were observed. In certain cases the rpoB phylogeny was in better agreement with DNA-DNA hybridization studies than the phylogeny derived from 16S rDNA. The rpoB gene is strongly conserved within the various species of the family of Pasteurellaceae. Hence, rpoB gene sequence analysis in conjunction with 16S rDNA sequencing is a valuable tool for phylogenetic studies of the Pasteurellaceae and may also prove useful for reorganizing the current taxonomy of this bacterial family.
Resumo:
Pasteurella multocida is commonly found in the oral cavity of cats and dogs. In humans it is known as an opportunistic pathogen after bites from these animals. Phenotypic identification of P. multocida based on biochemical reactions is often limited and usually only done on a species level, even though 3 subspecies are described. For molecular taxonomy and diagnostic purposes a phylogenetic analysis of the three subspecies of P. multocida based on their 16S rRNA (rrs) gene sequence was therefore carried out. We found P. multocida subsp. septica on a distinguished branch on the phylogenetic tree of Pasteurellaceae, due to a 1.5% divergence of its rrs gene compared to the two other, more closely related subspecies multocida and gallicida. This phylogenetic divergence can be used for the identification of P. multocida subsp. septica by rrs gene determination since they form a phylogenetically well isolated and defined group as shown with a set of feline isolates. Comparison to routine phenotypic identification shows the advantage of the sequence-based identification over conventional methods. It is therefore helpful for future unambiguous identification and molecular taxonomy of P. multocida as well as for epidemiological investigations.
Resumo:
In lucid dreams the dreamer is aware of dreaming and often able to influence the ongoing dream content. Lucid dreaming is a learnable skill and a variety of techniques is suggested for lucid dreaming induction. This systematic review evaluated the evidence for the effectiveness of induction techniques. A comprehensive literature search was carried out in biomedical databases and specific resources. Thirty-five studies were included in the analysis (11 sleep laboratory and 24 field studies), of which 26 employed cognitive techniques, 11 external stimulation and one drug application. The methodological quality of the included studies was relatively low. None of the induction techniques were verified to induce lucid dreams reliably and consistently, although some of them look promising. On the basis of the reviewed studies, a taxonomy of lucid dream induction methods is presented. Several methodological issues are discussed and further directions for future studies are proposed.
Resumo:
BACKGROUND: Research on comorbidity of psychiatric disorders identifies broad superordinate dimensions as underlying structure of psychopathology. While a syndrome-level approach informs diagnostic systems, a symptom-level approach is more likely to represent the dimensional components within existing diagnostic categories. It may capture general emotional, cognitive or physiological processes as underlying liabilities of different disorders and thus further develop dimensional-spectrum models of psychopathology. METHODS: Exploratory and confirmatory factor analyses were used to examine the structure of psychopathological symptoms assessed with the Brief Symptom Inventory in two outpatient samples (n=3171), including several correlated-factors and bifactor models. The preferred models were correlated with DSM-diagnoses. RESULTS: A model containing eight correlated factors for depressed mood, phobic fear, aggression, suicidal ideation, nervous tension, somatic symptoms, information processing deficits, and interpersonal insecurity, as well a bifactor model fit the data best. Distinct patterns of correlations with DSM-diagnoses identified a) distress-related disorders, i.e., mood disorders, PTSD, and personality disorders, which were associated with all correlated factors as well as the underlying general distress factor; b) anxiety disorders with more specific patterns of correlations; and c) disorders defined by behavioural or somatic dysfunctions, which were characterised by non-significant or negative correlations with most factors. CONCLUSIONS: This study identified emotional, somatic, cognitive, and interpersonal components of psychopathology as transdiagnostic psychopathological liabilities. These components can contribute to a more accurate description and taxonomy of psychopathology, may serve as phenotypic constructs for further aetiological research, and can inform the development of tailored general and specific interventions to treat mental disorders.
Resumo:
Endogenous development is defined as development that values primarily locally available resources and the way people organized themselves for that purpose. It is a dynamic and evolving concept that also embraces innovations and complementation from other than endogenous sources of knowledge; however, only as far as they are based on mutual respect and the recognition of cultural and socioeconomic self-determination of each of the parties involved. Experiences that have been systematized in the context of the BioAndes Program are demonstrating that enhancing food security and food sovereignty on the basis of endogenous development can be best achieved by applying a ‘biocultural’ perspective: This means to promote and support actions that are simultaneously valuing biological (fauna, flora, soils, or agrobiodiversity) and sociocultural resources (forms of social organization, local knowledge and skills, norms, and the related worldviews). In Bolivia, that is one of the Latin-American countries with the highest levels of poverty (79% of the rural population) and undernourishment (22% of the total population), the Program BioAndes promotes food sovereignty and food security by revitalizing the knowledge of Andean indigenous people and strengthening their livelihood strategies. This starts by recognizing that Andean people have developed complex strategies to constantly adapt to highly diverse and changing socioenvironmental conditions. These strategies are characterized by organizing the communities, land use and livelihoods along a vertical gradient of the available eco-climatic zones; the resulting agricultural systems are evolving around the own sociocultural values of reciprocity and mutual cooperation, giving thus access to an extensive variety of food, fiber and energy sources. As the influences of markets, competition or individualization are increasingly affecting the life in the communities, people became aware of the need to find a new balance between endogenous and exogenous forms of knowledge. In this context, BioAndes starts by recognizing the wealth and potentials of local practices and aims to integrate its actions into the ongoing endogenous processes of innovation and adaptation. In order to avoid external impositions and biases, the program intervenes on the basis of a dialogue between exogenous, mainly scientific, and indigenous forms of knowledge. The paper presents an analysis of the strengths and weaknesses of enhancing endogenous development through a dialogue between scientific and indigenous knowledge by specifically focusing on its effects on food sovereignty and food security in three ‘biocultural’ rural areas of the Bolivian highlands. The paper shows how the dialogue between different forms of knowledge evolved alongside the following project activities: 1) recuperation and renovation of local seeds and crop varieties (potato – Solanum spp., quinoa – Chenopodium quinoa, cañahua – Chenopodium pallidicaule); 2) support for the elaboration of community-based norms and regulations for governing access and distribution of non-timber forest products, such as medicinal, fodder, and construction plants; 3) revitalization of ethnoveterinary knowledge for sheep and llama breeding; 4) improvement of local knowledge about the transformation of food products (sheep-cheese, lacayote – Cucurbita sp. - jam, dried llama meat, fours of cañahua and other Andean crops). The implementation of these activities fostered the community-based livelihoods of indigenous people by complementing them with carefully and jointly designed innovations based on internal and external sources of knowledge and resources. Through this process, the epistemological and ontological basis that underlies local practices was made visible. On this basis, local and external actors started to jointly define a renewed concept of food security and food sovereignty that, while oriented in the notions of well being according to a collectively re-crafted world view, was incorporating external contributions as well. Enabling and hindering factors, actors and conditions of these processes are discussed in the paper.
Resumo:
To reinvestigate the taxonomy of [Actinobacillus] muris, 474 strains mainly from mice and rats were characterized by phenotype and 130 strains selected for genotypic characterization by 16S rRNA and partial rpoB gene sequencing. The type strain was further investigated by whole genome sequencing. Phylogenetic analysis of the DNA sequences showed one monophyletic group with intra group similarities of 96.7 % and 97.2 % for 16S rRNA and rpoB genes, respectively. The lowest 16S rRNA similarity to the closest related valid named taxon outside the group was 95.9 % to the type strain of [Pasteurella] pneumotropica. The closest related taxon based on rpoB sequence comparison was 'Haemophilus influenzae-murium' with 88.4 %. A new genus, Muribacter is proposed based on a distinct phylogenetic position based on 16S rRNA and rpoB gene sequence comparisons with major divergence to the existing genera of Pasteurellaceae. The new genus includes the characteristics of [Actinobacillus] muris with the emendation that acid formation from (-)-D-mannitol is variable as well the hydrolysis of esculin while the α-glucosidase test is positive. There is no requirement for exogenously supplied nicotinamide adenine dinucleotide (V factor) for the majority of strains investigated, however, one strain was found positive. The major fatty acids of the type strain of Muribacter muris were C 14:0, C 14:0 3OH/C 16:1 ISOI, C 16:1 ω7c and C 16:0 which is in line with most genera of Pasteurellaceae. The type strain of Muribacter muris is CCUG 16938T ( = NCTC 12432T = ATCC 49577T).
Resumo:
Tritrichomonas spp. are parasitic protozoans that proliferate on mucus membranes of the urogenital, gastro-intestinal or nasal tract. For instance, Tritrichomonas foetus is an important cause of reproductive failure in cattle. Some years ago, T. foetus was also identified as a causative agent of diarrhoea in cats. Previous studies on the morphological, physiological and molecular levels have raised doubts as to the phylogenetic relationship among some Tritrichomonas species, particularly in relation to T. foetus, Tritrichomonas suis, and Tritrichomonas mobilensis. With the advent of molecular genetic tools, it has become clear that these three tritrichomonad species are closely related or may even represent the same species. Indeed, since recently, T. suis and T. foetus are generally considered as one species, with T. mobilensis being a closely related sister taxon. To date, molecular studies have not yet been able to resolve the taxonomic (specific) status of T. foetus from cattle and cats. In the future, novel genomic approaches, particularly those involving next generation sequencing are poised to resolve the taxonomy of Tritrichomonas spp. Here, we review the literature on the current state of knowledge of the taxonomy of T. foetus, T. suis, and T. mobilensis with special reference to the relationship between T. foetus from cattle and cats.