66 resultados para system selection and implementation
Resumo:
To document the practice and training opportunities of US-guided arthrocentesis and joint injection (UGAJ) among rheumatologists in the member countries of the European League Against Rheumatism (EULAR).
Resumo:
Major histocompatibility complex (MHC) antigen-presenting genes are the most variable loci in vertebrate genomes. Host-parasite co-evolution is assumed to maintain the excessive polymorphism in the MHC loci. However, the molecular mechanisms underlying the striking diversity in the MHC remain contentious. The extent to which recombination contributes to the diversity at MHC loci in natural populations is still controversial, and there have been only few comparative studies that make quantitative estimates of recombination rates. In this study, we performed a comparative analysis for 15 different ungulates species to estimate the population recombination rate, and to quantify levels of selection. As expected for all species, we observed signatures of strong positive selection, and identified individual residues experiencing selection that were congruent with those constituting the peptide-binding region of the human DRB gene. However, in addition for each species, we also observed recombination rates that were significantly different from zero on the basis of likelihood-permutation tests, and in other non-quantitative analyses. Patterns of synonymous and non-synonymous sequence diversity were consistent with differing demographic histories between species, but recent simulation studies by other authors suggest inference of selection and recombination is likely to be robust to such deviations from standard models. If high rates of recombination are common in MHC genes of other taxa, re-evaluation of many inference-based phylogenetic analyses of MHC loci, such as estimates of the divergence time of alleles and trans-specific polymorphism, may be required.
Resumo:
BACKGROUND: Neurally adjusted ventilatory assist (NAVA) delivers assist in proportion to the patient's respiratory drive as reflected by the diaphragm electrical activity (EAdi). We examined to what extent NAVA can unload inspiratory muscles, and whether unloading is sustainable when implementing a NAVA level identified as adequate (NAVAal) during a titration procedure. METHODS: Fifteen adult, critically ill patients with a Pao(2)/fraction of inspired oxygen (Fio(2)) ratio < 300 mm Hg were studied. NAVAal was identified based on the change from a steep increase to a less steep increase in airway pressure (Paw) and tidal volume (Vt) in response to systematically increasing the NAVA level from low (NAVAlow) to high (NAVAhigh). NAVAal was implemented for 3 h. RESULTS: At NAVAal, the median esophageal pressure time product (PTPes) and EAdi values were reduced by 47% of NAVAlow (quartiles, 16 to 69% of NAVAlow) and 18% of NAVAlow (quartiles, 15 to 26% of NAVAlow), respectively. At NAVAhigh, PTPes and EAdi values were reduced by 74% of NAVAlow (quartiles, 56 to 86% of NAVAlow) and 36% of NAVAlow (quartiles, 21 to 51% of NAVAlow; p < or = 0.005 for all). Parameters during 3 h on NAVAal were not different from parameters during titration at NAVAal, and were as follows: Vt, 5.9 mL/kg predicted body weight (PBW) [quartiles, 5.4 to 7.2 mL/kg PBW]; respiratory rate (RR), 29 breaths/min (quartiles, 22 to 33 breaths/min); mean inspiratory Paw, 16 cm H(2)O (quartiles, 13 to 20 cm H(2)O); PTPes, 45% of NAVAlow (quartiles, 28 to 57% of NAVAlow); and EAdi, 76% of NAVAlow (quartiles, 63 to 89% of NAVAlow). Pao(2)/Fio(2) ratio, Paco(2), and cardiac performance during NAVAal were unchanged, while Paw and Vt were lower, and RR was higher when compared to conventional ventilation before implementing NAVAal. CONCLUSIONS: Systematically increasing the NAVA level reduces respiratory drive, unloads respiratory muscles, and offers a method to determine an assist level that results in sustained unloading, low Vt, and stable cardiopulmonary function when implemented for 3 h.
Resumo:
Edited by one of the leading experts in the field, this book fills the need for a book presenting the most important methods for high-throughput screenings and functional characterization of enzymes. It adopts an interdisciplinary approach, making it indispensable for all those involved in this expanding field, and reflects the major advances made over the past few years. For biochemists, analytical, organic and catalytic chemists, and biotechnologists.