67 resultados para supramolecular synthon


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self – assembly is a powerful tool for the construction of highly organized nanostructures. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. 2D polymers are attractive objects for the field of material sciences due to their exceptional properties. [1] As shown before, amphiphilic oligopyrenotides (produced via automated solid-phase synthesis) form rod–like supramolecular polymers in water. [2] These assemblies form 1D objects. [3] By applying certain changes to the design of the oligopyrenotide units the dimensionality of the formed assemblies can be influenced. Herein, we demonstrate that Py3 (see Figure 1) forms defined supramolecular assemblies under thermodynamic conditions in water. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM). The obtained results suggest that oligopyrenotides with the present type of geometry and linker length leads to formation of 2D supramolecular assemblies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the biggest issues of modern materials science is developing of strategies to create large and ordered assemblies in the form of discrete nanoscale objects. Oligopyrenotides (OPs) represent novel class of amphiphilic molecules which tend to self-assemble forming highly ordered structures. As has been already shown OPs are able to form 1D («rod-like») supramolecular polymer [1]. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that certain changes to design of pyrene’s molecular core allow Py3 form 2D supramolecular assemblies («nanosheets») instead of 1D. Two dimensional supramolecular polymers are attractive objects due to their exceptional properties which originate from in-plan alignment of molecular units in the sheets with constant thickness ~ 2 nm [2]. These assemblies have high degree of internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic, negatively charged phosphates. The Py3 units are hold up by non-covalent interactions what makes these assemblies totally reversible. Moreover the polymerization occurs via nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the biggest issues of modern materials science is developing of strategies to create large and ordered assemblies in the form of discrete nanoscale objects. Oligopyrenotides (OPs) represent novel class of amphiphilic molecules which tend to self-assemble forming highly ordered structures. As has been already shown OPs are able to form 1D («rod-like») supramolecular polymer [1]. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that certain changes to design of pyrene’s molecular core allow Py3 form 2D supramolecular assemblies («nanosheets») instead of 1D. Two dimensional supramolecular polymers are attractive objects due to their exceptional properties which originate from in-plan alignment of molecular units in the sheets with constant thickness ~ 2 nm [2]. These assemblies have high degree of internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic, negatively charged phosphates. The Py3 units are hold up by non-covalent interactions what makes these assemblies totally reversible. Moreover the polymerization occurs via nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self – assembly is a powerful tool for the construction of highly organized nanostructures [1]. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. Herein, we demonstrate that designed molecule Py3 forms dimensionally - defined supramolecular assemblies under thermodynamic conditions in water [2]. To study Py3 self-assembly, we carried out whole set of spectroscopic and microscopic experiments. The factors influencing stability, morphology and behavior of «nanosheets» in multicomponent systems are discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aromatic pi–pi stacking interactions are ubiquitous in nature, medicinal chemistry and materials sciences. They play a crucial role in the stacking of nucleobases, thus stabilising the DNA double helix. The following paper describes a series of chimeric DNA–polycyclic aromatic hydrocarbon (PAH) hybrids. The PAH building blocks are electron-rich pyrene and electron-poor perylenediimide (PDI), and were incorporated into complementary DNA strands. The hybrids contain different numbers of pyrene–PDI interactions that were found to directly influence duplex stability. As the pyrene–PDI ratio approaches 1:1, the stability of the duplexes increases with an average value of 7.5 °C per pyrene–PDI supramolecular interaction indicating the importance of electrostatic complementarity for aromatic pi–pi stacking interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very important aspects of the modern nanotechnology are control and prediction of arraying patterns of opto- and electroactive molecules in discrete objects on nanoscale level both on surface and solution. Consequqntly, a self-assembly of small molucules provides such an opportunity.For example, oligopyrenotides (OPs, short amphiphilic pyrene oligomers) represent a novel class of amphiphilic molecules which tend to aggegate in aqueous phase. As has been already shown, OPs are able to form 1D supramolecular polymer only under high salt concentration. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that substitution type of the pyrene is crutial, and it determines a morphology of the assemblies. Thus, a 1.6-linkage causes a formation of large, free-standing 2D supromolecular polymers with a thickness 2 nm. These assemblies possess a high degree of an internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic negatively charged phosphates. Contrary, a 1.8-linkage exclusiveley leads to a formation of long (up to a few micrometer), nanometer thick helical supramolecular polymers. These structures tend to form even more complex structures (bundles, superhelixes). Moreover for both molecules, the polymerizations occurs via a nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supramolecular DNA assembly blends DNA building blocks with synthetic organic and inorganic molecules giving structural and functional advantages both to the initial self-assembly process and to the final construct. Synthetic molecules can bring a number of additional interactions into DNA nanotechnology. Incorporating extended aromatic molecules as connectors of DNA strands allows folding of these strands through π-π stacking (DNA “foldamers”). In previous work it was shown that short oligopyrenotides (phosphodiester-linked pyrene oligomers) behave as staircase-like foldamers, which cooperatively self-assemble into two-dimensional supramolecular polymers in aqueous medium. Herein, we demonstrate that a 10-mer DNA-sequence modified with 7 pyrene units (see illustration) forms dimensionally-defined supramolecular polymers under thermodynamic conditions in water. We present the self-assembly behavior, morphological studies, and the spectroscopic properties of the investigated DNA-sequences (illustrative AFM picture shown below).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein we demonstrate that a substitution type of the pyrene in short amphiphilic oligomers determines a morphology of the assemblies formed. Thus, 1.6- and 2.7-linkages lead to a formation of micrometer-sized 2D supromolecular polymers with a constant thickness 2 nm (pictures A and B). These assemblies possess a high degree of an internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic negatively charged phosphates. Contrary, a 1.8-linkage exclusiveley leads to a formation of long nanometer thick helical supramolecular polymers (picturee C). These structures tend to form even more complex assemblies (bundles, superhelixes). Moreover, for all samples the polymerization process occurs via a nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supramolecular DNA assembly blends DNA building blocks with synthetic organic molecules giving structural and functional advantages. Incorporating extended aromatic molecules as connectors of DNA strands allows folding of these strands through π-π stacking (DNA 'foldamers'). In previous work it was shown that short oligopyrenotides behave as staircase-like foldamers, which cooperatively self-assemble into 2D supramolecular polymers in aqueous medium. Herein, we demonstrate that 10-mer DNA-sequence conjugated with seven pyrene unites forms dimensionally-defined supramolecular polymers under thermodynamic conditions in water. We present the self-assembly behavior, morphologycal studies (AFM and TEM), and the spectroscopic properties (UV/vis, CD) of the investigated pyrene - conjugated DNA-sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supramolecular assembly of π-conjugated systems is of large interested due to the possibility to use them in electronic devices.[1] Chrysene is a polyaromatic hydrocarbon which has been studied e.g for organic light-emitting diodes (OLEDs).[2] In continuation of our previous work involving the supramolecular polymerisation of pyrene oligomers [3] an oligomer consisting of three chrysenes linked by phophodiesters was synthesised (Chry3). UV-Vis measurements show that aggregates of Chry3 are formed in aqueous medium. This is illustrated by general hypochromicity, a change in vibronic band intensities and, in particular, the appearance of a red-shifted absorption band in the S0 → S2 transition. The data suggest the formation of J-aggregates. The formation of supramolecular polymers is further studied by temperature-dependent absorption- and fluorescence measurements, and by atomic force microscopy (AFM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient collection of solar energy relies on the design and construction of well-organized light-harvesting systems. Herein we report that supramolecular phenanthrene polymers doped with pyrene are effective collectors of light energy. The linear polymers are formed through the assembly of short amphiphilic oligomers in water. Absorption of light by phenanthrene residues is followed by electronic energy transfer along the polymer over long distances (>100 nm) to the accepting pyrene molecules. The high efficiency of the energy transfer, which is documented by large fluorescence quantum yields, suggests a quantum coherent process.