69 resultados para subalpine coniferous forests


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungi are important members of soil microbial communities with a crucial role in biogeochemical processes. Although soil fungi are known to be highly diverse, little is known about factors influencing variations in their diversity and community structure among forests dominated by the same tree species but spread over different regions and under different managements. We analyzed the soil fungal diversity and community composition of managed and unmanaged European beech dominated forests located in three German regions, the Schwäbische Alb in Southwestern, the Hainich-Dün in Central and the Schorfheide Chorin in the Northeastern Germany, using internal transcribed spacer (ITS) rDNA pyrotag sequencing. Multiple sequence quality filtering followed by sequence data normalization revealed 1655 fungal operational taxonomic units. Further analysis based on 722 abundant fungal OTUs revealed the phylum Basidiomycota to be dominant (54%) and its community to comprise 71.4% of ectomycorrhizal taxa. Fungal community structure differed significantly (p≤0.001) among the three regions and was characterized by non-random fungal OTUs co-occurrence. Soil parameters, herbaceous understory vegetation, and litter cover affected fungal community structure. However, within each study region we found no difference in fungal community structure between management types. Our results also showed region specific significant correlation patterns between the dominant ectomycorrhizal fungal genera. This suggests that soil fungal communities are region-specific but nevertheless composed of functionally diverse and complementary taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates four decades of socio-economic and environmental change in a shifting cultivation landscape in the northern uplands of Laos. Historical changes in land cover and land use were analyzed using a chronological series of remote sensing data. Impacts of landscape change on local livelihoods were investigated in seven villages through interviews with various stakeholders. The study reveals that the complex mosaics of agriculture and forest patches observed in the study area have long constituted key assets for the resilience of local livelihood systems in the face of environmental and socio-economic risks. However, over the past 20 years, a process of segregating agricultural and forest spaces has increased the vulnerability of local land users. This process is a direct outcome of policies aimed at increasing national forest cover, eradicating shifting cultivation and fostering the emergence of more intensive and commercial agricultural practices. We argue that agriculture-forest segregation should be buffered in such a way that a diversity of livelihood opportunities and economic development pathways can be maintained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyses of pollen, macrofossils and microscopic charcoal in the sediment of a small sub-alpine lake (Karakol, Kyrgyzstan) provide new data to reconstruct the vegetation history of the Kungey Alatau spruce forest during the late-Holocene, i.e. the past 4,000 years. The pollen data suggest that Picea schrenkiana F. and M. was the dominant tree in this region from the beginning of the record. The pollen record of pronounced die-backs of the forests, along with lithostratigraphical evidence, points to possible climatic cooling (and/or drying) around 3,800 cal year B.P., and between 3,350 and 2,520 cal year B.P., with a culmination at 2,800-2,600 cal B.P., although stable climatic conditions are reported for this region for the past 3,000-4,000 years in previous studies. From 2,500 to 190 cal year B.P. high pollen values of P. schrenkiana suggest rather closed and dense forests under the environmental conditions of that time. A marked decline in spruce forests occurred with the onset of modern human activities in the region from 190 cal year B.P. These results show that the present forests are anthropogenically reduced and represent only about half of their potential natural extent. As P. schrenkiana is a species endemic to the western Tien Shan, it is most likely that its refugium was confined to this region. However, our palaeoecological record is too recent to address this hypothesis thoroughly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Radiation metabolomics employing mass spectral technologies represents a plausible means of high-throughput minimally invasive radiation biodosimetry. A simplified metabolomics protocol is described that employs ubiquitous gas chromatography-mass spectrometry and open source software including random forests machine learning algorithm to uncover latent biomarkers of 3 Gy gamma radiation in rats. Urine was collected from six male Wistar rats and six sham-irradiated controls for 7 days, 4 prior to irradiation and 3 after irradiation. Water and food consumption, urine volume, body weight, and sodium, potassium, calcium, chloride, phosphate and urea excretion showed major effects from exposure to gamma radiation. The metabolomics protocol uncovered several urinary metabolites that were significantly up-regulated (glyoxylate, threonate, thymine, uracil, p-cresol) and down-regulated (citrate, 2-oxoglutarate, adipate, pimelate, suberate, azelaate) as a result of radiation exposure. Thymine and uracil were shown to derive largely from thymidine and 2'-deoxyuridine, which are known radiation biomarkers in the mouse. The radiation metabolomic phenotype in rats appeared to derive from oxidative stress and effects on kidney function. Gas chromatography-mass spectrometry is a promising platform on which to develop the field of radiation metabolomics further and to assist in the design of instrumentation for use in detecting biological consequences of environmental radiation release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lake sediments from Lauenensee (1381 m a.s.l.), a small lake in the Bernese Alps, were analysed to reconstruct the vegetation and fire history. The chronology is based on 11 calibrated radiocarbon dates on terrestrial plant macrofossils suggesting a basal age of 14,200 cal. BP. Pollen and macrofossil data imply that treeline never reached the lake catchment during the Bølling–Allerød interstadial. Treeline north of the Alps was depressed by c. 300 altitudinal meters, if compared with southern locations. We attribute this difference to colder temperatures and to unbuffered cold air excursions from the ice masses in northern Europe. Afforestation started after the Younger Dryas at 11,600 cal. BP. Early-Holocene tree-Betula and Pinus sylvestris forests were replaced by Abies alba forests around 7500 cal. BP. Continuous high-resolution pollen and macrofossil series allow quantitative assessments of vegetation dynamics at 5900–5200 cal. BP (first expansion of Picea abies, decline of Abies alba) and 4100–2900 cal. BP (first collapse of Abies alba). The first signs of human activity became noticeable during the late Neolithic c. 5700–5200 cal. BP. Cross-correlation analysis shows that the expansion of Alnus viridis and the replacement of Abies alba by Picea abies after c. 5500 cal. BP was most likely a consequence of human disturbance. Abies alba responded very sensitively to a combination of fire and grazing disturbance. Our results imply that the current dominance of Picea abies in the upper montane and subalpine belts is a consequence of anthropogenic activities through the millennia.