25 resultados para structures of debt


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isostructural title compounds, {(C7H7N2)2[SnI4]}n, (1), and {(C7H5F2N2)2[SnI4]}n, (2), show a layered perovskite-type structure composed of anionic {[SnI4]2-}n sheets parallel to (100), which are decorated on both sides with templating benzimidazolium or 5,6-di­fluoro­benzimidazolium cations, respectively. These planar organic heterocycles mainly form N-H...I hydrogen bonds to the terminal I atoms of the corner-sharing [SnI6] octa­hedra (point group symmetry 2) from the inorganic layer, but not to the bridging ones. This is in contrast to most of the reported structures of related compounds where ammonium cations are involved. Here hydrogen bonding to both types of iodine atoms and thereby a distortion of the inorganic layers to various extents is observed. For (1) and (2), all Sn-I-Sn angles are linear and no out-of-plane distortions of the inorganic layers occur, a fact of relevance in view of the material properties. The arrangement of the aromatic cations is mainly determined through the direction of the N-H...I hydrogen bonds. The coherence between organic bilayers along [100] is mainly achieved through van der Waals inter­actions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new ligand 4,5-bis (2-pyridylmethylsulfanyl)-4',5'-bis(cyanoethylthio)tetrathiafulvalene (BPM-BCET-TTF) and its nickel(II) complex have been prepared and crystallographically characterized. The Ni(II) complex shows octahedral geometry around the metal ion with the coordination site occupied by the pyridyl nitrogen atoms, the thioether sulfur atoms of the ligand and cis coordination of the halide ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution structural information on optimally preserved bacterial cells can be obtained with cryo-electron microscopy of vitreous sections. With the help of this technique, the existence of a periplasmic space between the plasma membrane and the thick peptidoglycan layer of the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus was recently shown. This raises questions about the mode of polymerization of peptidoglycan. In the present study, we report the structure of the cell envelope of three gram-positive bacteria (B. subtilis, Streptococcus gordonii, and Enterococcus gallinarum). In the three cases, a previously undescribed granular layer adjacent to the plasma membrane is found in the periplasmic space. In order to better understand how nascent peptidoglycan is incorporated into the mature peptidoglycan, we investigated cellular regions known to represent the sites of cell wall production. Each of these sites possesses a specific structure. We propose a hypothetic model of peptidoglycan polymerization that accommodates these differences: peptidoglycan precursors could be exported from the cytoplasm to the periplasmic space, where they could diffuse until they would interact with the interface between the granular layer and the thick peptidoglycan layer. They could then polymerize with mature peptidoglycan. We report cytoplasmic structures at the E. gallinarum septum that could be interpreted as cytoskeletal elements driving cell division (FtsZ ring). Although immunoelectron microscopy and fluorescence microscopy studies have demonstrated the septal and cytoplasmic localization of FtsZ, direct visualization of in situ FtsZ filaments has not been obtained in any electron microscopy study of fixed and dehydrated bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data. METHODS Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch) were tested using eight pairs of pre-existing CT data (pre- and post-treatment). These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D) between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses. RESULTS There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05). The AC + F technique was the most accurate (D<0.17 mm), as expected, followed by AC and BZ superimpositions that presented similar level of accuracy (D<0.5 mm). 3P and 1Z were the least accurate superimpositions (0.79of each superimposition technique (p>0.05), the detected structural changes differed significantly between different techniques (p<0.05). Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error. CONCLUSIONS Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In the present study population, the BZ superimposition was comparable to AC, with the added advantage of being applicable to scans with a smaller field of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four U7 RNA-related sequences were isolated from a human genomic DNA library. None of the sequences completely match the published human U7 RNA sequence and all of them contain features typical of reverse-transcribed pseudogenes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combustion-derived and synthetic nano-sized particles (NSP) have gained considerable interest among pulmonary researchers and clinicians for two main reasons: 1) Inhalation exposure to combustion-derived NSP was associated with increased pulmonary and cardiovascular morbidity and mortality as suggested by epidemiological studies. Experimental evidence has provided a mechanistic picture of the adverse health effects associated with inhalation of combustion-derived and synthetic NSP. 2) The toxicological potential of NSP contrasts with the potential application of synthetic NSP in technological as well as medicinal settings with the latter including the use of NSP as diagnostics or therapeutics. In order to shed light on this paradox, this article aims to highlight recent findings about the interaction of inhaled NSP with the structures of the respiratory tract including surfactant and alveolar macrophages and epithelial cells. Cellular responses to NSP exposure include the generation of reactive oxygen species and the induction of an inflammatory response. Furthermore, this review places special emphasis on methodological differences between experimental studies and the caveats associated with the dose metrics and points out ways to overcome inherent methodological problems. Key words: electron tomography, surfactant, translocation, oxidative stress, inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose The better understanding of vertebral mechanical properties can help to improve the diagnosis of vertebral fractures. As the bone mechanical competence depends not only from bone mineral density (BMD) but also from bone quality, the goal of the present study was to investigate the anisotropic indentation moduli of the different sub-structures of the healthy human vertebral body and spondylophytes by means of microindentation. Methods Six human vertebral bodies and five osteophytes (spondylophytes) were collected and prepared for microindentation test. In particular, indentations were performed on bone structural units of the cortical shell (along axial, circumferential and radial directions), of the endplates (along the anterio-posterior and lateral directions), of the trabecular bone (along the axial and transverse directions) and of the spondylophytes (along the axial direction). A total of 3164 indentations down to a maximum depth of 2.5 µm were performed and the indentation modulus was computed for each measurement. Results The cortical shell showed an orthotropic behavior (indentation modulus, Ei, higher if measured along the axial direction, 14.6±2.8 GPa, compared to the circumferential one, 12.3±3.5 GPa, and radial one, 8.3±3.1 GPa). Moreover, the cortical endplates (similar Ei along the antero-posterior, 13.0±2.9 GPa, and along the lateral, 12.0±3.0 GPa, directions) and the trabecular bone (Ei= 13.7±3.4 GPa along the axial direction versus Ei=10.9±3.7 GPa along the transverse one) showed transversal isotropy behavior. Furthermore, the spondylophytes showed the lower mechanical properties measured along the axial direction (Ei=10.5±3.3 GPa). Conclusions The original results presented in this study improve our understanding of vertebral biomechanics and can be helpful to define the material properties of the vertebral substructures in computational models such as FE analysis.