62 resultados para stride length


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel non-culture based 16S rRNA Terminal Restriction Fragment Length Polymorphism (T-RFLP) method using the restriction enzymes Tsp509I and Hpy166II was developed for the characterization of the nasopharyngeal microbiota and validated using recently published 454 pyrosequencing data. 16S rRNA gene T-RFLP for 153 clinical nasopharyngeal samples from infants with acute otitis media (AOM) revealed 5 Tsp509I and 6 Hpy166II terminal fragments (TFs) with a prevalence of >10%. Cloning and sequencing identified all TFs with a prevalence >6% allowing a sufficient description of bacterial community changes for the most important bacterial taxa. The conjugated 7-valent pneumococcal polysaccharide vaccine (PCV-7) and prior antibiotic exposure had significant effects on the bacterial composition in an additive main effects and multiplicative interaction model (AMMI) in concordance with the 16S rRNA 454 pyrosequencing data. In addition, the presented T-RFLP method is able to discriminate S. pneumoniae from other members of the Mitis group of streptococci, which therefore allows the identification of one of the most important human respiratory tract pathogens. This is usually not achieved by current high throughput sequencing protocols. In conclusion, the presented 16S rRNA gene T-RFLP method is a highly robust, easy to handle and a cheap alternative to the computationally demanding next-generation sequencing analysis. In case a lot of nasopharyngeal samples have to be characterized, it is suggested to first perform 16S rRNA T-RFLP and only use next generation sequencing if the T-RFLP nasopharyngeal patterns differ or show unknown TFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: In this population-based study, reference values were generated for renal length, and the heritability and factors associated with kidney length were assessed. METHODS: Anthropometric parameters and renal ultrasound measurements were assessed in randomly selected nuclear families of European ancestry (Switzerland). The adjusted narrow sense heritability of kidney size parameters was estimated by maximum likelihood assuming multivariate normality after power transformation. Gender-specific reference centiles were generated for renal length according to body height in the subset of non-diabetic non-obese participants with normal renal function. RESULTS: We included 374 men and 419 women (mean ± SD, age 47 ± 18 and 48 ± 17 years, BMI 26.2 ± 4 and 24.5 ± 5 kg/m(2), respectively) from 205 families. Renal length was 11.4 ± 0.8 cm in men and 10.7 ± 0.8 cm in women; there was no difference between right and left renal length. Body height, weight and estimated glomerular filtration rate (eGFR) were positively associated with renal length, kidney function negatively, age quadratically, whereas gender and hypertension were not. The adjusted heritability estimates of renal length and volume were 47.3 ± 8.5 % and 45.5 ± 8.8 %, respectively (P < 0.001). CONCLUSION: The significant heritability of renal length and volume highlights the familial aggregation of this trait, independently of age and body size. Population-based references for renal length provide a useful guide for clinicians. KEY POINTS: • Renal length and volume are heritable traits, independent of age and size. • Based on a European population, gender-specific reference values/percentiles are provided for renal length. • Renal length correlates positively with body length and weight. • There was no difference between right and left renal lengths in this study. • This negates general teaching that the left kidney is larger and longer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, 231 strains of Yersinia enterocolitica, 25 strains of Y. intermedia, and 10 strains of Y. bercovieri from human and porcine sources (including reference strains) were analyzed using amplified fragment length polymorphism (AFLP), a whole-genome fingerprinting method for subtyping bacterial isolates. AFLP typing distinguished the different Yersinia species examined. Representatives of Y. enterocolitica biotypes 1A, 1B, 2, 3, and 4 belonged to biotype-related AFLP clusters and were clearly distinguished from each other. Y. enterocolitica biotypes 2, 3, and 4 appeared to be more closely related to each other (83% similarity) than to biotypes 1A (11%) and 1B (47%). Biotype 1A strains exhibited the greatest genetic heterogeneity of the biotypes studied. The biotype 1A genotypes were distributed among four major clusters, each containing strains from both human and porcine sources, confirming the zoonotic potential of this organism. The AFLP technique is a valuable genotypic method for identification and typing of Y. enterocolitica and other Yersinia spp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomeres have emerged as crucial cellular elements in aging and various diseases including cancer. To measure the average length of telomere repeats in cells, we describe our protocols that use fluorescent in situ hybridization (FISH) with labeled peptide nucleic acid (PNA) probes specific for telomere repeats in combination with fluorescence measurements by flow cytometry (flow FISH). Flow FISH analysis can be performed using commercially available flow cytometers, and has the unique advantage over other methods for measuring telomere length of providing multi-parameter information on the length of telomere repeats in thousands of individual cells. The accuracy and reproducibility of the measurements is augmented by the automation of most pipetting (aspiration and dispensing) steps, and by including an internal standard (control cells) with a known telomere length in every tube. The basic protocol for the analysis of nucleated blood cells from 22 different individuals takes about 12 h spread over 2-3 days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary hair length variability in mice and dogs is caused by mutations within the fibroblast growth factor 5 (FGF5) gene. The aim of this study was to evaluate the feline FGF5 orthologue as a functional candidate gene for the long hair phenotype in cats, which is recessive to short hair. We amplified the feline FGF5 cDNA and characterised two alternatively spliced transcripts by RT-PCR. Comparative cDNA and genomic DNA sequencing of long- and short-haired cats revealed four non-synonymous polymorphisms in the FGF5 coding sequence. A missense mutation (AM412646:c.194C>A) was found in the homozygous state in 25 long-haired Somali, Persian, Maine Coon, Ragdoll and crossbred cats. Fifty-five short-haired cats had zero or one copy of this allele. Additionally, we found perfect co-segregation of the c.194C>A mutation within two independent pedigrees segregating for hair length. A second FGF5 exon 1 missense mutation (AM412646:c.182T>A) was found exclusively in long-haired Norwegian Forest cats. The c.182T>A mutation probably represents a second FGF5 mutation responsible for long hair in cats. In addition to the c.194C>A mutation, a frameshift mutation (AM412646:c.474delT) was found with a high frequency in the long-haired Maine Coon breed. Finally, a missense mutation (AM412646:c.475A>C) was also associated with the long-haired phenotype in some breeds. However, as one short-haired cat was homozygous for this polymorphism, it is unlikely that it has a functional role in the determination of hair length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To study if telomere length can be used as a surrogate marker for the mitotic history in normal and affected hematopoietic cells from patients with paroxysmal nocturnal hemoglobinuria (PNH). METHODS: The telomere length was measured by automated multicolor flow fluorescence in situ hybridization in glycosyl-phosphatidyl-inositol anchored protein (GPI)-negative and GPI-positive peripheral blood leukocytes. Eleven patients were studied, two with predominantly hemolytic PNH and nine with PNH associated with marrow failure. RESULTS: Telomere length in GPI-negative cells was significantly shorter than in GPI-positive cells of the same patient (p < 0.01, n = 11). The difference in telomere length (telomere length in GPI-positive minus telomere length in GPI-negative cells) correlated with the percentage of GPI-negative white blood cells. CONCLUSION: Our results support the hypothesis that telomere length is correlated to the replicative history of GPI-positive and GPI-negative cells and warrant further studies of telomere length in relation to disease progression in PNH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome in which the known susceptibility genes (DKC1, TERC, and TERT) belong to the telomere maintenance pathway; patients with DC have very short telomeres. We used multicolor flow fluorescence in situ hybridization analysis of median telomere length in total blood leukocytes, granulocytes, lymphocytes, and several lymphocyte subsets to confirm the diagnosis of DC, distinguish patients with DC from unaffected family members, identify clinically silent DC carriers, and discriminate between patients with DC and those with other bone marrow failure disorders. We defined "very short" telomeres as below the first percentile measured among 400 healthy control subjects over the entire age range. Diagnostic sensitivity and specificity of very short telomeres for DC were more than 90% for total lymphocytes, CD45RA+/CD20- naive T cells, and CD20+ B cells. Granulocyte and total leukocyte assays were not specific; CD45RA- memory T cells and CD57+ NK/NKT were not sensitive. We observed very short telomeres in a clinically normal family member who subsequently developed DC. We propose adding leukocyte subset flow fluorescence in situ hybridization telomere length measurement to the evaluation of patients and families suspected to have DC, because the correct diagnosis will substantially affect patient management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stem cells of various tissues are typically defined as multipotent cells with 'self-renewal' properties. Despite the increasing interest in stem cells, surprisingly little is known about the number of times stem cells can or do divide over a lifetime. Based on telomere-length measurements of hematopoietic cells, we previously proposed that the self-renewal capacity of hematopoietic stem cells is limited by progressive telomere attrition and that such cells divide very rapidly during the first year of life. Recent studies of patients with aplastic anemia resulting from inherited mutations in telomerase genes support the notion that the replicative potential of hematopoietic stem cells is directly related to telomere length, which is indirectly related to telomerase levels. To revisit conclusions about stem cell turnover based on cross-sectional studies of telomere length, we performed a longitudinal study of telomere length in leukocytes from newborn baboons. All four individual animals studied showed a rapid decline in telomere length (approximately 2-3 kb) in granulocytes and lymphocytes in the first year after birth. After 50-70 weeks the telomere length appeared to stabilize in all cell types. These observations suggest that hematopoietic stem cells, after an initial phase of rapid expansion, switch at around 1 year of age to a different functional mode characterized by a markedly decreased turnover rate.