26 resultados para stochastic simulation method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stochastic models for three-dimensional particles have many applications in applied sciences. Lévy–based particle models are a flexible approach to particle modelling. The structure of the random particles is given by a kernel smoothing of a Lévy basis. The models are easy to simulate but statistical inference procedures have not yet received much attention in the literature. The kernel is not always identifiable and we suggest one approach to remedy this problem. We propose a method to draw inference about the kernel from data often used in local stereology and study the performance of our approach in a simulation study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical swine fever (CSF) outbreaks can cause enormous losses in naïve pig populations. How to best minimize the economic damage and number of culled animals caused by CSF is therefore an important research area. The baseline CSF control strategy in the European Union and Switzerland consists of culling all animals in infected herds, movement restrictions for animals, material and people within a given distance to the infected herd and epidemiological tracing of transmission contacts. Additional disease control measures such as pre-emptive culling or vaccination have been recommended based on the results from several simulation models; however, these models were parameterized for areas with high animal densities. The objective of this study was to explore whether pre-emptive culling and emergency vaccination should also be recommended in low- to moderate-density areas such as Switzerland. Additionally, we studied the influence of initial outbreak conditions on outbreak severity to improve the efficiency of disease prevention and surveillance. A spatial, stochastic, individual-animal-based simulation model using all registered Swiss pig premises in 2009 (n=9770) was implemented to quantify these relationships. The model simulates within-herd and between-herd transmission (direct and indirect contacts and local area spread). By varying the four parameters (a) control measures, (b) index herd type (breeding, fattening, weaning or mixed herd), (c) detection delay for secondary cases during an outbreak and (d) contact tracing probability, 112 distinct scenarios were simulated. To assess the impact of scenarios on outbreak severity, daily transmission rates were compared between scenarios. Compared with the baseline strategy (stamping out and movement restrictions) vaccination and pre-emptive culling neither reduced outbreak size nor duration. Outbreaks starting in a herd with weaning piglets or fattening pigs caused higher losses regarding to the number of culled premises and were longer lasting than those starting in the two other index herd types. Similarly, larger transmission rates were estimated for these index herd type outbreaks. A longer detection delay resulted in more culled premises and longer duration and better transmission tracing increased the number of short outbreaks. Based on the simulation results, baseline control strategies seem sufficient to control CSF in low-medium animal-dense areas. Early detection of outbreaks is crucial and risk-based surveillance should be focused on weaning piglet and fattening pig premises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 Natural soil profiles may be interpreted as an arrangement of parts which are characterized by properties like hydraulic conductivity and water retention function. These parts form a complicated structure. Characterizing the soil structure is fundamental in subsurface hydrology because it has a crucial influence on flow and transport and defines the patterns of many ecological processes. We applied an image analysis method for recognition and classification of visual soil attributes in order to model flow and transport through a man-made soil profile. Modeled and measured saturation-dependent effective parameters were compared. We found that characterizing and describing conductivity patterns in soils with sharp conductivity contrasts is feasible. Differently, solving flow and transport on the basis of these conductivity maps is difficult and, in general, requires special care for representation of small-scale processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Positron emission tomography (PET)∕computed tomography (CT) measurements on small lesions are impaired by the partial volume effect, which is intrinsically tied to the point spread function of the actual imaging system, including the reconstruction algorithms. The variability resulting from different point spread functions hinders the assessment of quantitative measurements in clinical routine and especially degrades comparability within multicenter trials. To improve quantitative comparability there is a need for methods to match different PET∕CT systems through elimination of this systemic variability. Consequently, a new method was developed and tested that transforms the image of an object as produced by one tomograph to another image of the same object as it would have been seen by a different tomograph. The proposed new method, termed Transconvolution, compensates for differing imaging properties of different tomographs and particularly aims at quantitative comparability of PET∕CT in the context of multicenter trials. METHODS To solve the problem of image normalization, the theory of Transconvolution was mathematically established together with new methods to handle point spread functions of different PET∕CT systems. Knowing the point spread functions of two different imaging systems allows determining a Transconvolution function to convert one image into the other. This function is calculated by convolving one point spread function with the inverse of the other point spread function which, when adhering to certain boundary conditions such as the use of linear acquisition and image reconstruction methods, is a numerically accessible operation. For reliable measurement of such point spread functions characterizing different PET∕CT systems, a dedicated solid-state phantom incorporating (68)Ge∕(68)Ga filled spheres was developed. To iteratively determine and represent such point spread functions, exponential density functions in combination with a Gaussian distribution were introduced. Furthermore, simulation of a virtual PET system provided a standard imaging system with clearly defined properties to which the real PET systems were to be matched. A Hann window served as the modulation transfer function for the virtual PET. The Hann's apodization properties suppressed high spatial frequencies above a certain critical frequency, thereby fulfilling the above-mentioned boundary conditions. The determined point spread functions were subsequently used by the novel Transconvolution algorithm to match different PET∕CT systems onto the virtual PET system. Finally, the theoretically elaborated Transconvolution method was validated transforming phantom images acquired on two different PET systems to nearly identical data sets, as they would be imaged by the virtual PET system. RESULTS The proposed Transconvolution method matched different PET∕CT-systems for an improved and reproducible determination of a normalized activity concentration. The highest difference in measured activity concentration between the two different PET systems of 18.2% was found in spheres of 2 ml volume. Transconvolution reduced this difference down to 1.6%. In addition to reestablishing comparability the new method with its parameterization of point spread functions allowed a full characterization of imaging properties of the examined tomographs. CONCLUSIONS By matching different tomographs to a virtual standardized imaging system, Transconvolution opens a new comprehensive method for cross calibration in quantitative PET imaging. The use of a virtual PET system restores comparability between data sets from different PET systems by exerting a common, reproducible, and defined partial volume effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Electrochemical conversion of xenobiotics has been shown to mimic human phase I metabolism for a few compounds. MATERIALS & METHODS Twenty-one compounds were analyzed with a semiautomated electrochemical setup and mass spectrometry detection. RESULTS The system was able to mimic some metabolic pathways, such as oxygen gain, dealkylation and deiodination, but many of the expected and known metabolites were not produced. CONCLUSION Electrochemical conversion is a useful approach for the preparative synthesis of some types of metabolites, but as a screening method for unknown phase I metabolites, the method is, in our opinion, inferior to incubation with human liver microsomes and in vivo experiments with laboratory animals, for example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The traditional Newton method for solving nonlinear operator equations in Banach spaces is discussed within the context of the continuous Newton method. This setting makes it possible to interpret the Newton method as a discrete dynamical system and thereby to cast it in the framework of an adaptive step size control procedure. In so doing, our goal is to reduce the chaotic behavior of the original method without losing its quadratic convergence property close to the roots. The performance of the modified scheme is illustrated with various examples from algebraic and differential equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatality risk caused by avalanches on road networks can be analysed using a long-term approach, resulting in a mean value of risk, and with emphasis on short-term fluctuations due to the temporal variability of both, the hazard potential and the damage potential. In this study, the approach for analysing the long-term fatality risk has been adapted by modelling the highly variable short-term risk. The emphasis was on the temporal variability of the damage potential and the related risk peaks. For defined hazard scenarios resulting from classified amounts of snow accumulation, the fatality risk was calculated by modelling the hazard potential and observing the traffic volume. The avalanche occurrence probability was calculated using a statistical relationship between new snow height and observed avalanche releases. The number of persons at risk was determined from the recorded traffic density. The method resulted in a value for the fatality risk within the observed time frame for the studied road segment. The long-term fatality risk due to snow avalanches as well as the short-term fatality risk was compared to the average fatality risk due to traffic accidents. The application of the method had shown that the long-term avalanche risk is lower than the fatality risk due to traffic accidents. The analyses of short-term avalanche-induced fatality risk provided risk peaks that were 50 times higher than the statistical accident risk. Apart from situations with high hazard level and high traffic density, risk peaks result from both, a high hazard level combined with a low traffic density and a high traffic density combined with a low hazard level. This provided evidence for the importance of the temporal variability of the damage potential for risk simulations on road networks. The assumed dependence of the risk calculation on the sum of precipitation within three days is a simplified model. Thus, further research is needed for an improved determination of the diurnal avalanche probability. Nevertheless, the presented approach may contribute as a conceptual step towards a risk-based decision-making in risk management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs' roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct Simulation Monte Carlo (DSMC) is a powerful numerical method to study rarefied gas flows such as cometary comae and has been used by several authors over the past decade to study cometary outflow. However, the investigation of the parameter space in simulations can be time consuming since 3D DSMC is computationally highly intensive. For the target of ESA's Rosetta mission, comet 67P/Churyumov-Gerasimenko, we have identified to what extent modification of several parameters influence the 3D flow and gas temperature fields and have attempted to establish the reliability of inferences about the initial conditions from in situ and remote sensing measurements. A large number of DSMC runs have been completed with varying input parameters. In this work, we present the simulation results and conclude on the sensitivity of solutions to certain inputs. It is found that among cases of water outgassing, the surface production rate distribution is the most influential variable to the flow field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decomposition technique introduced by Blinder (1973) and Oaxaca (1973) is widely used to study outcome differences between groups. For example, the technique is commonly applied to the analysis of the gender wage gap. However, despite the procedure's frequent use, very little attention has been paid to the issue of estimating the sampling variances of the decomposition components. We therefore suggest an approach that introduces consistent variance estimators for several variants of the decomposition. The accuracy of the new estimators under ideal conditions is illustrated with the results of a Monte Carlo simulation. As a second check, the estimators are compared to bootstrap results obtained using real data. In contrast to previously proposed statistics, the new method takes into account the extra variation imposed by stochastic regressors.