19 resultados para stellar winds
Resumo:
The use of hindcast climatic data is quite extended for multiple applications. However, this approach needs the support of a validation process to allow its drawbacks and, therefore, confidence levels to be assessed. In this work, the strategy relies on an hourly wind database resulting from a dynamical downscaling experiment, with a spatial resolution of 10 km, covering the Iberian Peninsula (IP), driven by the ERA40 reanalysis (1959–2001) extended by European Centre for Medium-Range Weather Forecast (ECMWF) analysis (2002–2007) and comprising two main steps. Initially, the skill of the simulation is evaluated comparing the quality-tested observational database (Lorente-Plazas et al., 2014) at local and regional scales. The results show that the model is able to portray the main features of the wind over the IP: annual cycles, wind roses, spatial and temporal variability, as well as the response to different circulation types. In addition, there is a significant added value of the simulation with respect to driving conditions, especially in regions with a complex orography. However, some problems are evident, the major drawback being the systematic overestimation of the wind speed, which is mainly attributed to a missrepresentation of frictional forces. The model skill is also lower along the Mediterranean coast and for the Pyrenees. In a second phase, the high spatio-temporal resolution of the pseudo-real wind database is used to explore the limitations of the observational database. It is shown that missing values do not affect the characterisation of the wind climate over the IP, while the length of the observational period (6 years) is sufficient for most regions, with only a few exceptions. The spatial distribution of the observational sampling schemes should be enhanced to improve the correct assessment of all IP wind regimes, particularly in some mountainous areas.
Constraining planet structure from stellar chemistry: the cases of CoRoT-7, Kepler-10, and Kepler-93
Resumo:
Aims. We explore the possibility that the stellar relative abundances of different species can be used to constrain the bulk abundances of known transiting rocky planets. Methods. We use high resolution spectra to derive stellar parameters and chemical abundances for Fe, Si, Mg, O, and C in three stars hosting low mass, rocky planets: CoRoT-7, Kepler-10, and Kepler-93. These planets follow the same line along the mass-radius diagram, pointing toward a similar composition. The derived abundance ratios are compared with the solar values. With a simple stoichiometric model, we estimate the iron mass fraction in each planet, assuming stellar composition. Results. We show that in all cases, the iron mass fraction inferred from the mass-radius relationship seems to be in good agreement with the iron abundance derived from the host star's photospheric composition. Conclusions. The results suggest that stellar abundances can be used to add constraints on the composition of orbiting rocky planets.
Resumo:
Aims. The main goal of this work is to study element ratios that are important for the formation of planets of different masses. Methods. We study potential correlations between the existence of planetary companions and the relative elemental abundances of their host stars. We use a large sample of FGK-type dwarf stars for which precise Mg, Si, and Fe abundances have been derived using HARPS high-resolution and high-quality data. Results. A first analysis of the data suggests that low-mass planet host stars show higher [Mg/Si] ratios, while giant planet hosts present [Mg/Si] that is lower than field stars. However, we found that the [Mg/Si] ratio significantly depends on metallicity through Galactic chemical evolution. After removing the Galactic evolution trend only the difference in the [Mg/Si] elemental ratio between low-mass planet hosts and non-hosts was present in a significant way. These results suggest that low-mass planets are more prevalent around stars with high [Mg/Si]. Conclusions. Our results demonstrate the importance of Galactic chemical evolution and indicate that it may play an important role in the planetary internal structure and composition. The results also show that abundance ratios may be a very relevant issue for our understanding of planet formation and evolution.