19 resultados para sponge, luciferase, cloning, Suberites
Resumo:
We have cloned the complete coding region of the porcine TNFSF10 gene. The porcine TNFSF10 cDNA has an ORF of 870 nucleotides and shares 85% identity with human TNFSF10, and 75% and 72% identity with rat and mouse Tnfsf10 coding sequences, respectively. The deduced porcine TNFSF10 protein consists of 289 amino acids with the calculated molecular mass of 33.5 kDa and a predicted pI of 8.15. The amino acid sequence similarities correspond to 86, 72 and 70% when compared with human, rat and mouse sequences, respectively. Northern blot analysis detected TNFSF10-specific transcripts (approximately 1.7 kb) in various organs of a 10-week-old pig, suggesting ubiquitous expression. Real-time RT-PCR studies of various organs from fetal (days 73 and 98) and postnatal stages (two weeks, eight months) demonstrated developmental and tissue-specific regulation of TNFSF10 mRNA abundance. The chromosomal location of the porcine TNFSF10 gene was determined by FISH of a specific BAC clone to metaphase chromosomes. This TNFSF10 BAC clone has been assigned to SSC13q34-->q36. Additionally, the localization of the TNFSF10 gene was verified by RH mapping on the porcine IMpRH panel.
Resumo:
Inverse fusion PCR cloning (IFPC) is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.
Resumo:
Degenerate oligonucleotide primers derived from conserved cysteine protease sequences were used in the reverse transcription polymerase chain reaction to amplify seven different cysteine protease cDNA clones, Fcp1-7, from RNA isolated from adult Fasciola hepatica. Five of the amplified F. hepatica sequences showed homology to the cathepsin L type and two were more related to the cathepsin B type. Southern blot analysis suggests that some members of this protease gene family are present in multiple copies. Northern blot analysis revealed differences in the levels of steady state mRNA expression for some of these proteases. The 5' and the 3' regions of Fcp1 were amplified using the rapid amplification of cDNA ends PCR protocol (RACE-PCR) and an additional clone was obtained by screening a lambda gt10 cDNA library using Fcp1 as a probe. The Fcp1 cDNA fragment was also subcloned in the expression vector pGEX and expressed as a glutathione-S-transferase (GST) fusion protein in Escherichia coli. Antibodies, raised in rabbits against the GST:Fcp1 fusion protein, were used in western blot analysis to examine expression in different life-cycle stages of F. hepatica. In extracts from adult and immature parasites, the immune serum recognised predominantly two proteins of 30 kDa and 38 kDa. In other parasite stages, proteins of different molecular weight were recognised by the anti-GST:Fcp1 antiserum, indicating stage-specific gene expression or processing of Fcp1. In gelatine substrate gel analysis, strong proteolytic activity could be detected at 30 kDa, but not at 38 kDa, suggesting that the 30 kDa protein represents the mature enzyme and the 38 kDa protein the proenzyme.
Resumo:
A human interleukin 4 (hIL-4)-encoding cDNA (hIL4) probe was used to screen a bovine genomic library, and three clones containing sequences with homology to the human and mouse IL4 cDNAs were isolated. Sequence information obtained from one of these genomic clones was used to design an oligodeoxyribonucleotide primer corresponding to the transcription start point region for use in the polymerase chain reaction (PCR). The PCR-RACE protocol, designed for the rapid amplification of cDNA ends, was successfully used to generate a full-length bovine IL4 (bIL4) cDNA clone from polyadenylated RNA isolated from concanavalin A-stimulated bovine lymph node cells. The bIL4 cDNA is 570 bp in length and contains an open reading frame of 405 nucleotides (nt), coding for a 15.1-kDa precursor of 135 amino acids (aa), which should be reduced to 12.6 kDa for unglycosylated bIL4 after cleavage of a putative hydrophobic leader sequence of 24 aa. The aa sequence contains one possible Asn-linked glycosylation site. Bovine IL4 is shorter than mouse (mIL4) and hIL4, because of a 51-nt deletion in the coding region. Comparison of the overall nt and deduced aa sequences shows a greater homology of bIL4 with hIL4 than with mIL4. This homology is not evenly distributed, however, with the nt sequences 5' and 3' of the coding region showing a much greater homology between all three species than the coding sequence.