25 resultados para spatial distribution of plant


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. Lake Ohrid is likely of Pliocene age and thus commonly referred to as the oldest existing lake in Europe. In this study spatial variability of recent sediment composition is assessed using >50 basin wide distributed surface sediment samples. Analysis of biogeochemical bulk parameters, selected metals, pigment concentrations as well as grain size distributions revealed a significant spatial heterogeneity in surface sediment composition. It implies that sedimentation in Lake Ohrid is controlled by an interaction of multiple natural and anthropogenic factors and processes. Major factors controlling surface sediment composition are related to differences in geological catchment characteristics, anthropogenic land use, and a counterclockwise rotating surface water current. In some instances processes controlling sediment composition also seem to impact distribution patterns of biodiversity, which suggests a common interaction of processes responsible for both patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite their crucial role in the nitrogen cycle, freshwater ecosystems are relatively rarely studied for active ammonia oxidizers (AO). This study of Lake Lucerne determined the abundance of both amoA genes and gene transcripts of ammonia-oxidizing archaea (AOA) and bacteria (AOB) over a period of 16 months, shedding more light on the role of both AO in a deep, alpine lake environment. At the surface, at 42 m water depth, and in the water layer immediately above the sediment, AOA generally outnumbered AOB. However, in the surface water during summer stratification, when both AO were low in abundance, AOB were more numerous than AOA. Temporal distribution patterns of AOA and AOB were comparable. Higher abundances of amoA gene transcripts were observed at the onset and end of summer stratification. In summer, archaeal amoA genes and transcripts correlated negatively with temperature and conductivity. Concentrations of ammonium and oxygen did not vary enough to explain the amoA gene and transcript dynamics. The observed herbivorous zooplankton may have caused a hidden flux of mineralized ammonium and a change in abundance of genes and transcripts. At the surface, AO might have been repressed during summer stratification due to nutrient limitation caused by active phytoplankton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to maximize their fitness, individuals aim at choosing territories offering the most appropriate combination of resources. As population size fluctuates in time, the frequency of breeding territory occupancy reflects territory quality. We investigated the relationships between the frequency of territory occupancy (2002–2009) vs. habitat characteristics, prey abundance, reproductive success and parental traits in hoopoes Upupa epops L., with the objective to define proxies for the delineation of conservation priority areas. We predicted that the distribution of phenotypes is despotic and sought for phenotypic characteristics expressing dominance. Our findings support the hypothesis of a despotic distribution. Territory selection was non-random: frequently occupied territories were settled earlier in the season and yielded higher annual reproductive success, but the frequency of territory occupancy could not be related to any habitat characteristics. Males found in frequently occupied territories showed traits expressing dominance (i.e. larger body size and mass, and older age). In contrast, morphological traits of females were not related to the frequency of territory occupancy, suggesting that territory selection and maintenance were essentially a male's task. Settlement time in spring, reproductive success achieved in a given territory, as well as phenotypic traits and age of male territory holders reflected territory quality, providing good proxies for assessing priority areas for conservation management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the prediction from spatial competition models that intraspecific aggregation may promote coexistence and thus maintain biodiversity with experimental communities of four annual species. Monocultures, three-species mixtures, and the four-species mixture were sown at two densities and with either random or intraspecifically aggregated distributions. There was a hierarchy of competitive abilities among the four species. The weaker competitors showed higher aboveground biomass in the aggregated distribution compared to the random distribution, especially at high density. In one species, intraspecific aggregation resulted in an 86% increase in the number of flowering individuals and a 171% increase in the reproductive biomass at high density. The competitively superior species had a lower biomass in the aggregated distribution than in the random distribution at high density. The data support the hypothesis that the spatial distribution of plants profoundly affects competition in such a way that weaker competitors increase their fitness while stronger competitors are suppressed when grown in the neighborhood of conspecifics. This implies that the spatial arrangement of plants in a community can be an important determinant of species coexistence and biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our knowledge about the effect of single-tree influence areas on the physicochemical properties of the underlying mineral soil in forest ecosystems is still limited. This restricts our ability to adequately estimate future changes in soil functioning due to forest management practices. We studied the stand scale spatial variation of different soil organic matter species investigated by 13C NMR spectroscopy, lignin phenol and neutral sugar analysis under an unmanaged mountainous high-elevation Norway spruce (Picea abies L.) forest in central Europe. Multivariate geostatistical approaches were applied to relate the spatial patterns of the different soil organic matter species to topographic parameters, bulk density, oxalate- and dithionite-extractable iron, pH, and the impact of tree distribution. Soil samples were taken from the mineral top soil. Generally, the stand scale distribution patterns of different soil organic matter compounds could be divided into two groups: Those compounds, which were significantly spatially correlated with topography/altitude and those with small scale spatial pattern (range ≤ 10 m) that was closely related to tree distribution. The concentration of plant-derived soil organic matter components, such as lignin, at a given sampling point was significantly spatially related to the distance of the nearest tree (p ≤ 0.05). In contrast, the spatial distribution of mainly microbial-derived compounds (e.g. galactose and mannose) could be attributed to the dominating impact of small-scale topography and the contribution of poorly crystalline iron oxides that were significantly larger in the central depression of the study site compared to crest and slope positions. Our results demonstrate that topographic parameters dominate the distribution of overall topsoil organic carbon (OC) stocks at temperate high-elevation forest ecosystems, particularly in sloped terrain. However, trees superimpose topography-controlled OC biogeochemistry beneath their crown by releasing litter and changing soil conditions in comparison to open areas. This may lead to distinct zones with different mechanisms of soil organic matter degradation and also stabilization in forest stands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: The effect of chilling on the intercellular distribution of mRNAs for enzymes of assimilatory sulfate reduction, the activity of adenosine 5′-phosphosulfate reductase (APR), and the level of glutathione was analysed in leaves and roots of maize (Zea mays L). At 25 °C the mRNAs for APR, ATP sulfurylase, and sulfite reductase accumulated in bundle-sheath only, whereas the mRNA for O-acetylserine sulfhydrylase was also detected in mesophyll cells. Glutathione was predominantly detected in mesophyll cells; however, oxidized glutathione was equally distributed between the two cell types. Chilling at 12 °C induced oxidative stress which resulted in increased concentrations of oxidized glutathione in both cell types and a prominent increase of APR mRNA and activity in bundle-sheath cells. After chilling, mRNAs for APR and sulfite reductase, as well as low APR activity, were detected in mesophyll cells. In roots, APR mRNA and activity were at higher levels in root tips than in the mature root and were greatly increased after chilling. These results demonstrate that chilling stress affected the levels and the intercellular distribution of mRNAs for enzymes of sulfate assimilation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Recent theoretical studies suggest that the stability of ecosystem processes is not governed by diversity per se, but by multitrophic interactions in complex communities. However, experimental evidence supporting this assumption is scarce.2. We investigated the impact of plant diversity and the presence of above- and below-ground invertebrates on the stability of plant community productivity in space and time, as well as the interrelationship between both stability measures in experimental grassland communities.3. We sampled above-ground plant biomass on subplots with manipulated above- and below-ground invertebrate densities of a grassland biodiversity experiment (Jena Experiment) 1, 4 and 6 years after the establishment of the treatments to investigate temporal stability. Moreover, we harvested spatial replicates at the last sampling date to explore spatial stability.4. The coefficient of variation of spatial and temporal replicates served as a proxy for ecosystem stability. Both spatial and temporal stability increased to a similar extent with plant diversity. Moreover, there was a positive correlation between spatial and temporal stability, and elevated plant density might be a crucial factor governing the stability of diverse plant communities.5. Above-ground insects generally increased temporal stability, whereas impacts of both earthworms and above-ground insects depended on plant species richness and the presence of grasses. These results suggest that inconsistent results of previous studies on the diversity–stability relationship have in part been due to neglecting higher trophic-level interactions governing ecosystem stability.6. Changes in plant species diversity in one trophic level are thus unlikely to mirror changes in multitrophic interrelationships. Our results suggest that both above- and below-ground invertebrates decouple the relationship between spatial and temporal stability of plant community productivity by differently affecting the homogenizing mechanisms of plants in diverse plant communities.7.Synthesis. Species extinctions and accompanying changes in multitrophic interactions are likely to result not only in alterations in the magnitude of ecosystem functions but also in its variability complicating the assessment and prediction of consequences of current biodiversity loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV) is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IRT1 and IRT2 are members of the Arabidopsis ZIP metal transporter family that are specifically induced by iron deprivation in roots and act as heterologous suppressors of yeast mutations inhibiting iron and zinc uptake. Although IRT1 and IRT2 are thought to perform redundant functions as root-specific metal transporters, insertional inactivation of the IRT1 gene alone results in typical symptoms of iron deficiency causing severe leaf chlorosis and lethality in soil. The irt1 mutation is characterized by specific developmental defects, including a drastic reduction of chloroplast thylakoid stacking into grana and lack of palisade parenchyma differentiation in leaves, reduced number of vascular bundles in stems, and irregular patterns of enlarged endodermal and cortex cells in roots. Pulse labeling with 59Fe through the root system shows that the irt1 mutation reduces iron accumulation in the shoots. Short-term labeling with 65Zn reveals no alteration in spatial distribution of zinc, but indicates a lower level of zinc accumulation. In comparison to wild-type, the irt1 mutant responds to iron and zinc deprivation by altered expression of certain zinc and iron transporter genes, which results in the activation of ZIP1 in shoots, reduction of ZIP2 transcript levels in roots, and enhanced expression of IRT2 in roots. These data support the conclusion that IRT1 is an essential metal transporter required for proper development and regulation of iron and zinc homeostasis in Arabidopsis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assessment of patterns of patentability in plant biotechnology on the basis of existing statistics shows a considerable concentration of patents to a few countries, in particular the United States, Australia, Japan, China, Mexico, Brazil, Germany, Canada, New Zealand, South Korea, India, Spain and Hungary. These patterns suggest that there is a clear relationship between the choice of patent jurisdictions and the biotechnology regulatory framework. This observation of the geographic distribution of biotechnology patents lends credence to maintaining a system of territorial rights that allow for regulatory competition, but continuing the process of substantive patent law harmonization which potentially minimize trade barriers.