106 resultados para somatic Anxiety
Resumo:
The aim of this observational, cross-sectional study was to analyse the relationship between dental anxiety (DA) and health-related quality of life aspects associated with oral conditions of a population with dental treatment needs in Switzerland.
Resumo:
BACKGROUND: During the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility that are affected by a specific QTL for SCS on Bos taurus autosome 18 (BTA18). Thereby, some first insights were sought into the genetically determined mechanisms of mammary gland epithelial cells influencing the course of infection. METHODS: Primary bovine mammary gland epithelial cells (pbMEC) were sampled from the udder parenchyma of cows selected for high and low mastitis susceptibility by applying a marker-assisted selection strategy considering QTL and molecular marker information of a confirmed QTL for SCS in the telomeric region of BTA18. The cells were cultured and subsequently inoculated with heat-inactivated mastitis pathogens Escherichia coli and Staphylococcus aureus, respectively. After 1, 6 and 24 h, the cells were harvested and analyzed using the microarray expression chip technology to identify differences in mRNA expression profiles attributed to genetic predisposition, inoculation and cell culture. RESULTS: Comparative analysis of co-expression profiles clearly showed a faster and stronger response after pathogen challenge in pbMEC from less susceptible animals that inherited the favorable QTL allele 'Q' than in pbMEC from more susceptible animals that inherited the unfavorable QTL allele 'q'. Furthermore, the results highlighted RELB as a functional and positional candidate gene and related non-canonical Nf-kappaB signaling as a functional mechanism affected by the QTL. However, in both groups, inoculation resulted in up-regulation of genes associated with the Ingenuity pathways 'dendritic cell maturation' and 'acute phase response signaling', whereas cell culture affected biological processes involved in 'cellular development'. CONCLUSIONS: The results indicate that the complex expression profiling of pathogen challenged pbMEC sampled from cows inheriting alternative QTL alleles is suitable to study genetically determined molecular mechanisms of mastitis susceptibility in mammary epithelial cells in vitro and to highlight the most likely functional pathways and candidate genes underlying the QTL effect.
Simply a nest? Effects of different enrichments on stereotypic and anxiety-related behaviour in mice
Resumo:
Improving the home cages of laboratory mice by environmental enrichment has been widely used to reduce cage stereotypies and anxiety-related behaviour in behavioural tests. However, enrichment studies differ substantially in type, complexity and variation of enrichments. Therefore, it is unclear whether success depends on specific enrichment items, environmental complexity, or novelty associated with enrichment. The aim of this study was therefore to dissociate the effects of environmental complexity and novelty on stereotypy development and compare these effects with the provision of nesting material alone. Thus, 54 freshly weaned male ICR (CD-1) mice were pairwise allocated to standard laboratory cages enriched in three different ways (n = 18 per group). Treatment 1 consisted of cotton wool as nesting material. Treatments 2 and 3 were structurally more complex, including a shelter and a climbing structure as additional resources. To render complexity and novelty independent of the specific enrichment items, three shelters (cardboard house, plastic tunnel, red plastic house) and three climbing structures (ladder, rope, wooden bars) were used to create nine different combinations of enrichment. In treatment 2 (complexity), each pair of mice was assigned to a different combination that remained constant throughout 9 weeks, whereas in treatment 3 (novelty), each pair of mice was exposed to all 9 combinations in turn by changing them weekly in a pseudorandom order. After 9 weeks, stereotypic behaviour in the home cage was assessed from video recordings, and anxiety-related behaviour was assessed in two behavioural tests (elevated zero-maze, open-field). However, no significant differences in stereotypy scores and no consistent differences in anxiety-related behaviours were found between the three groups. These findings indicate that within standard laboratory cages neither complexity nor novelty of simple enrichments have additional effects on stereotypic and anxiety-related behaviour beyond those of adequate nesting material. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Low somatic cell count (SCC) is a reliable indicator of high-quality milk free of pathogenic microorganisms. Thus, an important goal in dairy practice is to produce milk with low SCC. Selection for cows with low SCC can sometimes lead to extremely low SCC in single quarters. The cells in milk are, however, predominantly immune cells with important immune functions. To investigate the mammary immune competence of quarters with very low SCC, healthy udder quarters of cows with normal SCC of (40-100) x 10(3) cells/ml and very low SCC of < 20 x 10(3) cells/ml were challenged with lipopolysaccharide (LPS) from Escherichia coli. In the first experiment, SCC and cell viability after a challenge with 50 ng of LPS/quarter was investigated. In the second experiment, tumour necrosis factor alpha (TNF-alpha) concentration and lactate dehydrogenase (LDH) activity in milk, and mRNA expression of various innate immune factors in milk cells were measured after a challenge with 100 mug LPS/quarter. LPS challenge induced an increase of SCC. SCC levels reached were higher in quarters with normal SCC and maximum SCC was reached 1 h earlier than in very low SCC quarters. The increase of TNF-alpha concentrations in milk in response to LPS challenge was lower in quarters with very low SCC than in quarters with normal SCC. The viability of cells and the LDH activity in milk increased in response to LPS challenge, however, without a difference between the groups. The mRNA expression of IL-1beta and IL-8 was increased in milk cells at 12 h after LPS challenge, whereas that of TNF-alpha and lactoferrin was not increased at the measured time points (12, 24 and 36 h after LPS challenge). No differences of mRNA expression of measured immune factors between normal and very low SCC samples were detected. The study showed that udder quarters with very low SCC responded with a less marked increase of SCC compared with quarters with normal SCC. This difference corresponded with simultaneously lower TNF-alpha concentrations in milk. However, the immune competence of the cells themselves based on mRNA expression of TNF-alpha, IL-8, IL-1beta, and lactoferrin, did not differ. The results may indicate that very low SCC can impair the immune competence of udder quarters, because the immune response in udder quarters with lower SCC is less efficient as fewer cells contribute to the production of immunoregulators.
Resumo:
The effect of somatic cell count (SCC) and milk fraction on milk composition, distribution of cell populations, and mRNA expression of various inflammatory parameters was studied. Therefore, quarter milk samples were defined as cisternal (C), first 400 g of alveolar (A1), and remaining alveolar milk (A2) during the course of milking. Quarters were assigned to 4 groups according to their total SCC: 1) <12 x 10(3)/mL, 2) 12 to 100 x 10(3)/mL, 3) 100 to 350 x 10(3)/mL, and 4) >350 x 10(3)/mL. Milk constituents of interest were SCC, fat, protein, lactose sodium, and chloride ions as well as electrical conductivity. Cell populations were classified into lymphocytes, macrophages, and neutrophils (PMN). The mRNA expression of the inflammatory factors tumor necrosis factor-alpha, interleukin-1beta, cyclooxygenase-2, lactoferrin, and lysozyme was measured via real-time, quantitative reverse transcription PCR. Somatic cell count decreased from highest levels in C to lowest levels in A1 and increased thereafter to A2 in all groups. Fat content increased from C to A2 and with increasing SCC level. Lactose decreased with increasing SCC level but remained unchanged during milking. Concentrations of sodium and chloride, and electrical conductivity increased with increasing SCC but were higher in C than in A1 and A2. Protein was not affected by milk fraction or SCC level. The distribution of leukocytes was dramatically influenced by milk fraction and SCC. Lymphocytes were the dominating cell population in group 1, but the proportion of lymphocytes was low in groups 2, 3, and 4. Macrophage proportion was highest in group 2 and decreased in groups 3 and 4, whereas that of PMN increased from group 2 to 4. The content of macrophages decreased during milking in all SCC groups whereas that of PMN increased. The proportion of lymphocytes was not affected by milk fraction. The mRNA expression of all inflammatory factors showed an increase with increasing SCC but minor changes occurred during milking. In conclusion, milk fraction and SCC level have a crucial influence on the distribution of leukocyte populations and several milk constituents. The surprisingly high content of lymphocytes and concomitantly low mRNA expression of inflammatory factors in quarters with SCC <12 x 10(3)/mL indicates a different and possibly reduced readiness of the immune system to respond to invading pathogens.
Resumo:
This study investigated the changes in somatic cell counts (SCC) in different fractions of milk, with special emphasis on the foremilk and cisternal milk fractions. Therefore, in Experiment 1, quarter milk samples were defined as strict foremilk (F), cisternal milk (C), first 400 g of alveolar milk (A1), and the remaining alveolar milk (A2). Experiment 2 included 6 foremilk fractions (F1 to F6), consisting of one hand-stripped milk jet each, and the remaining cisternal milk plus the entire alveolar milk (RM). In Experiment 1, changes during milking indicated the importance of the sampled milk fraction for measuring SCC because the decrease in the first 3 fractions (F, C, and A1) was enormous in milk with high total quarter SCC. The decline in SCC from F to C was 50% and was 80% from C to A1. Total quarter SCC presented a value of approximately 20% of SCC in F or 35% of SCC in C. Changes in milk with low or very low SCC were marginal during milking. Fractions F and C showed significant differences in SCC among different total SCC concentrations. These differences disappeared with the alveolar fractions A1 and A2. In Experiment 2, a more detailed investigation of foremilk fractions supported the findings of Experiment 1. A significant decline in the foremilk fractions even of F1 to F6 was observed in high-SCC milk at concentrations >350 x 10(3) cells/mL. Although one of these foremilk fractions presented only 0.1 to 0.2% of the total milk, the SCC was 2- to 3-fold greater than the total quarter milk SCC. Because the trait of interest (SCC) was measured directly by using the DeLaval cell counter (DCC), the quality of measurement was tested. Statistically interesting factors (repeatability, recovery rate, and potential matrix effects of milk) proved that the DCC is a useful tool for identifying the SCC of milk samples, and thus of grading udder health status. Generally, the DCC provides reliable results, but one must consider that SCC even in strict foremilk can differ dramatically from SCC in the total cisternal fraction, and thus also from SCC in the alveolar fraction.