45 resultados para single cell gel electhrophoresis
Resumo:
All preparation efforts of biological samples in electron microscopy are focused to preserve structures as close as possible to the native state. To achieve this goal with tissues, it is of advantage to have a very short time between excision and fixation. The most common approach is chemical fixation: cross-linking of the tissue samples with aldehydes followed by postfixation with osmium tetroxide. Here, the fastest approach for tissue samples is perfusion. However, the diffusion of the fixation solution from blood vessels into the depth of the tissue is still slow and does not allow an overall instant fixation of a single cell. As a result, osmotic effects become evident (swelling or shrinkage of cell organelles). Another possibility is to take a tissue sample from the experimental animal. Excision of tissue can last quite some time, which results in even more pronounced autolytic induced osmotic effects. Furthermore, the animal does not survive the procedure in most cases. Alternatively, microbiopsies are an elegant technique to rapidly excise small quantities of tissue. Some tissues, such as liver and muscle, may be obtained using a non-lethal approach. To avoid the artifacts introduced by chemical fixation, high-pressure freezing of microbiopsies (brain, liver, kidney, and muscle) is a powerful alternative to chemical fixation. Here, we describe the microbiopsy method, and high-pressure freezing/freeze-substitution (HPF/FS) as a follow-up procedure. Cryosectioning of high-pressure frozen samples is optimally preserving the ultrastructure; however, it is not considered to be a routine approach yet.
Resumo:
Intra-arterial (IA) injection represents an experimental avenue for minimally invasive delivery of stem cells to the injured brain. It has however been reported that IA injection of stem cells carries the risk of reduction in cerebral blood flow (CBF) and microstrokes. Here we evaluate the safety of IA neural progenitor cell (NPC) delivery to the brain. Cerebral blood flow of rats was monitored during IA injection of single cell suspensions of NPCs after stroke. Animals received 1 × 10(6) NPCs either injected via a microneedle (microneedle group) into the patent common carotid artery (CCA) or via a catheter into the proximally ligated CCA (catheter group). Controls included saline-only injections and cell injections into non-stroked sham animals. Cerebral blood flow in the microneedle group remained at baseline, whereas in the catheter group a persistent (15 minutes) decrease to 78% of baseline occurred (P<0.001). In non-stroked controls, NPCs injected via the catheter method resulted in higher levels of Iba-1-positive inflammatory cells (P=0.003), higher numbers of degenerating neurons as seen in Fluoro-Jade C staining (P<0.0001) and ischemic changes on diffusion weighted imaging. With an appropriate technique, reduction in CBF and microstrokes do not occur with IA transplantation of NPCs.
Resumo:
Microfluidic technology has been successfully applied to isolate very rare tumor-derived epithelial cells (circulating tumor cells, CTCs) from blood with relatively high yield and purity, opening up exciting prospects for early detection of cancer. However, a major limitation of state-of-the-art CTC-chips is their inability to characterize the behavior and function of captured CTCs, for example to obtain information on proliferative and invasive properties or, ultimately, tumor re-initiating potential. Although CTCs can be efficiently immunostained with markers reporting phenotype or fate (e.g. apoptosis, proliferation), it has not yet been possible to reliably grow captured CTCs over long periods of time and at single cell level. It is challenging to remove CTCs from a microchip after capture, therefore such analyses should ideally be performed directly on-chip. To address this challenge, we merged CTC capture with three-dimensional (3D) tumor cell culture on the same microfluidic platform. PC3 prostate cancer cells were isolated from spiked blood on a transparent PDMS CTC-chip, encapsulated on-chip in a biomimetic hydrogel matrix (QGel™) that was formed in situ, and their clonal 3D spheroid growth potential was assessed by microscopy over one week in culture. The possibility to clonally expand a subset of captured CTCs in a near-physiological in vitro model adds an important element to the expanding CTC-chip toolbox that ultimately should improve prediction of treatment responses and disease progression.
Resumo:
Background: Looking for a candidate substance inducing hepatobiliary dysfunction under parenteral nutrition (PN) in newborns, we recently discovered that newborn infusions extract large amounts of the plasticizer diethylhexylphthalate (DEHP) from commonly used polyvinylchloride (PVC) infusion lines. This plasticizer is well known to be genotoxic and teratogenic in animals and to cause changes in various organs and enzyme systems even in humans. The aim of this study was to examine the effect of DEHP, extracted in the same way and in the same amount as in newborns, on livers of young rabbits. Methods: Prepubertal rabbits received lipid emulsion through central IV lines continuously for 3 weeks either via PVC or polyethylene (PE) infusion systems. Livers were examined after 1 and 3 weeks by light and electron microscopy. Results: By light microscopy, hydropic degeneration, single-cell necrosis, fibrosis, and bile duct proliferation were observed more in the PVC group. Electron microscopy revealed multiple nuclear changes, clusters and atypical forms of peroxisomes, proliferation of smooth endoplasmic reticulum, increased deposition of lipofuscin, and a mild perisinusoidal fibrosis only in the PVC group. These changes, which are generally regarded as reaction upon a toxic stimulus, could be exclusively attributed to DEHP. Conclusions: This investigation proved that DEHP produces toxin-like changes in livers of young rabbits in the same dose, duration, and method of administration as in newborn infants. For this reason, it is likely that DEHP is the substance that causes hepatobiliary dysfunction in newborns under PN. Possible modes of action of DEHP are proposed.
Resumo:
Osseointegration of titanium dental implants into the jaw bone, which is required for maintenance of the implant in the jaw, results in ankylosis. Dental implants are therefore very unlike natural teeth, which exhibit significant movement in response to mechanical forces. The ability to generate periodontal ligament (PDL) tissues onto dental implants would better mimic the functional characteristics of natural teeth, and would likely improve implant duration and function. OBJECTIVES: The objective of this study was to investigate the feasibility of bioengineering PDL tissues onto titanium implant surfaces. METHODS: Bilateral maxillary first and second molars of 8-week old rats were extracted and used to generate single cell suspensions of PDL tissues, which were expanded in culture. Immunohistochemistry and RT-PCR were used to identify putative PDL progenitor/stem cell populations and characterize stem cell properties, including self-renewal, multipotency and stem cell maker expression. Cultured rPDL cells were harvested at third passage, seeded onto Matrigel-coated titanium implants (1.75 mm x 1 mm), and placed into healed M1/M2 extraction sites. Non-cell seeded Matrigel-coated titanium implants served as negative controls. Implants were harvested after 8, 12, or 18 weeks. RESULTS: Cultured rPDL cells expressed the mesenchymal stem-cell marker STRO-1. Under defined culture conditions, PDL cells differentiated into adipogenic, neurogenic and osteogenic lineages. While control implants were largely surrounded by alveolar bone, experimental samples exhibited fibrous PDL-like tissues, and perhaps cementum, on the surface of experimental implants. CONCLUSIONS: PDL contains stem cells that can generate cementum/PDL-like tissue in vivo. Transplantation of these cells might hold promise as a therapeutic approach for the bioengineering of PDL tissues onto titanium implant. Further refinement of this method will likely result in improved dental implant strategies for use of autologous PDL tissue regeneration in humans. This research was supported by CIMIT, and NIH/NIDCR grant DE016132 (PCY), and TEACRS (YL).
Resumo:
Diagnosis of drug allergy involves first the recognition of sometimes unusual symptoms as drug allergy and, second, the identification of the eliciting drug. This is an often difficult task, as the clinical picture and underlying pathomechanisms are heterogeneous. In clinical routine, physicians frequently have to rely upon a suggestive history and eventual provocation tests, both having their specific limitations. For this reason both in vivo (skin tests) and in vitro tests are investigated intensively as tools to identify the disease-eliciting drug. One of the tests evaluated in drug allergy is the basophil activation test (BAT). Basophils with their high-affinity IgE receptors are easily accessible and therefore can be used as indicator cells for IgE-mediated reactions. Upon allergen challenge and cross-linking of membrane-bound IgE antibodies (via Fc-epsilon-RI) basophils up-regulate certain activation markers on their surface such as CD63 and CD203c, as well as intracellular markers (eg, phosphorylated p38MAPK). In BAT, these alterations can be detected rapidly on a single-cell basis by multicolor flow cytometry using specific monoclonal antibodies. Combining this technique with in vitro passive sensitization of donor basophils with patients' serum, one can prove the IgE dependence of a drug reaction. This article summarizes the authors' current experience with the BAT in the diagnostic management of immediate-type drug allergy mediated by drug-specific IgE antibodies.
Resumo:
Background: Slow conduction and ectopic activity are major determinants of cardiac arrhythmogenesis. Both of these conditions can be elicited by myofibroblasts (MFBs) following establishment of heterocellular gap junctional coupling with cardiomyocytes. MFBs appear during structural remodeling of the heart and are characterized by the expression of α-smooth muscle actin (α-SMA) containing stress fibers. In this study, we investigated whether pharmacological interference with the actin cytoskeleton affects myofibroblast arrhythmogeneicity. Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse conduction velocity (θ) and maximal upstroke velocities of propagated action potentials (dV/dtmax), expressed as % action potential amplitude change (%APA) per ms, were measured optically using voltage sensitive dyes. Actin was destabilized by latrunculin B (LtB) and cytochalasin D and stabilized with jasplakinolide. Data are given as mean ± S.D. (n = 5-22). Single cell electrophysiology was assessed using standard patch-clamp techniques. Results: As revealed by immunocytochemistry, exposure of MFBs to LtB (0.01-10 μmol/L) profoundly disrupted stress fibers which led to drastic changes in cell morphology with MFBs assuming an astrocyte-like shape. In control cardiomyocyte strands (no MFB coat), LtB had negligible effects on θ and dV/dtmax. In contrast, LtB applied to MFB-coated strands increased θ dose-dependently from 197 ± 35 mm/s to 344 ± 26 mm/s and dV/dtmax from 38 ± 5 to 78 ± 3% APA/ms, i.e., to values virtually identical to those of cardiomyocyte control strands (339 ± 24 mm/s; 77 ± 3% APA/ms). Highly similar results were obtained when exposing the preparations to cytochalasin D. In contrast, stabilization of actin with increasing concentrations of jasplakinolide exerted no significant effects on impulse conduction characteristics in MFB-coated strands. Whole-cell patch-clamp experiments showed that LtB hyperpolarized MFBs from -25 mV to -50 mV, thus limiting their depolarizing effect on cardiomyocytes which was shown before to cause arrhythmogenic slow conduction and ectopic activity. Conclusion: Pharmacological interference with the actin cytoskeleton of cardiac MFBs affects their electrophysiological phenotype to such an extent that they loose their detrimental effects on cardiomyocyte electrophysiology. This result might form a basis for the development of therapeutic strategies aimed at limiting the arrhythmogenic potential of MFBs.
Resumo:
Plant cell expansion is controlled by a fine-tuned balance between intracellular turgor pressure, cell wall loosening and cell wall biosynthesis. To understand these processes, it is important to gain in-depth knowledge of cell wall mechanics. Pollen tubes are tip-growing cells that provide an ideal system to study mechanical properties at the single cell level. With the available approaches it was not easy to measure important mechanical parameters of pollen tubes, such as the elasticity of the cell wall. We used a cellular force microscope (CFM) to measure the apparent stiffness of lily pollen tubes. In combination with a mechanical model based on the finite element method (FEM), this allowed us to calculate turgor pressure and cell wall elasticity, which we found to be around 0.3 MPa and 20–90 MPa, respectively. Furthermore, and in contrast to previous reports, we showed that the difference in stiffness between the pollen tube tip and the shank can be explained solely by the geometry of the pollen tube. CFM, in combination with an FEM-based model, provides a powerful method to evaluate important mechanical parameters of single, growing cells. Our findings indicate that the cell wall of growing pollen tubes has mechanical properties similar to rubber. This suggests that a fully turgid pollen tube is a relatively stiff, yet flexible cell that can react very quickly to obstacles or attractants by adjusting the direction of growth on its way through the female transmitting tissue.
Resumo:
During development, the genome undergoes drastic reorganization within the nuclear space. To determine tridimensional genome folding, genome-wide techniques (damID/Hi-C) can be applied using cell populations, but these have to be calibrated using microscopy and single-cell analysis of gene positioning. Moreover, the dynamic behavior of chromatin has to be assessed on living samples. Combining fast stereotypic development with easy genetics and microscopy, the nematode C. elegans has become a model of choice in recent years to study changes in nuclear organization during cell fate acquisition. Here we present two complementary techniques to evaluate nuclear positioning of genes either by fluorescence in situ hybridization in fixed samples or in living worm embryos using the GFP-lacI/lacO chromatin-tagging system.
Resumo:
HIV-1-infected cells in peripheral blood can be grouped into different transcriptional subclasses. Quantifying the turnover of these cellular subclasses can provide important insights into the viral life cycle and the generation and maintenance of latently infected cells. We used previously published data from five patients chronically infected with HIV-1 that initiated combination antiretroviral therapy (cART). Patient-matched PCR for unspliced and multiply spliced viral RNAs combined with limiting dilution analysis provided measurements of transcriptional profiles at the single cell level. Furthermore, measurement of intracellular transcripts and extracellular virion-enclosed HIV-1 RNA allowed us to distinguish productive from non-productive cells. We developed a mathematical model describing the dynamics of plasma virus and the transcriptional subclasses of HIV-1-infected cells. Fitting the model to the data allowed us to better understand the phenotype of different transcriptional subclasses and their contribution to the overall turnover of HIV-1 before and during cART. The average number of virus-producing cells in peripheral blood is small during chronic infection. We find that a substantial fraction of cells can become defectively infected. Assuming that the infection is homogenous throughout the body, we estimate an average in vivo viral burst size on the order of 104 virions per cell. Our study provides novel quantitative insights into the turnover and development of different subclasses of HIV-1-infected cells, and indicates that cells containing solely unspliced viral RNA are a good marker for viral latency. The model illustrates how the pool of latently infected cells becomes rapidly established during the first months of acute infection and continues to increase slowly during the first years of chronic infection. Having a detailed understanding of this process will be useful for the evaluation of viral eradication strategies that aim to deplete the latent reservoir of HIV-1.
Resumo:
Aims Myofibroblasts (MFBs) as appearing in the myocardium during fibrotic remodelling induce slow conduction following heterocellular gap junctional coupling with cardiomyocytes (CMCs) in bioengineered tissue preparations kept under isometric conditions. In this study, we investigated the hypothesis that strain as developed during diastolic filling of the heart chambers may modulate MFB-dependent slow conduction. Methods and results Effects of defined levels of strain on single-cell electrophysiology (patch clamp) and impulse conduction in patterned growth cell strands (optical mapping) were investigated in neonatal rat ventricular cell cultures (Wistar) grown on flexible substrates. While 10.5% strain only minimally affected conduction times in control CMC strands (+3.2%, n.s.), it caused a significant slowing of conduction in the fibrosis model consisting of CMC strands coated with MFBs (conduction times +26.3%). Increased sensitivity to strain of the fibrosis model was due to activation of mechanosensitive channels (MSCs) in both CMCs and MFBs that aggravated the MFB-dependent baseline depolarization of CMCs. As found in non-strained preparations, baseline depolarization of CMCs was partly due to the presence of constitutively active MSCs in coupled MFBs. Constitutive activity of MSCs was not dependent on the contractile state of MFBs, because neither stimulation (thrombin) nor suppression (blebbistatin) thereof significantly affected conduction velocities in the non-strained fibrosis model. Conclusions The findings demonstrate that both constitutive and strain-induced activity of MSCs in MFBs significantly enhance their depolarizing effect on electrotonically coupled CMCs. Ensuing aggravation of slow conduction may contribute to the precipitation of strain-related arrhythmias in fibrotically remodelled hearts.
Resumo:
Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic Aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment System varying particle number concentration independent of particle chemistry, and an aerosol Deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully differentiated HBE is most appropriate in future toxicity studies.
Resumo:
Expression of the hyaluronan-mediated motility receptor (RHAMM, CD168) predicts adverse clinicopathological features and decreased survival for colorectal cancer (CRC) patients. Using full tissue sections, we investigated the expression of RHAMM in tumor budding cells of 103 primary CRCs to characterize the biological processes driving single-cell invasion and early metastatic dissemination. RHAMM expression in tumor buds was analyzed with clinicopathological data, molecular features and survival. Tumor budding cells at the invasive front of CRC expressed RHAMM in 68% of cases. Detection of RHAMM-positive tumor budding cells was significantly associated with poor survival outcome (P = .0312), independent of TNM stage and adjuvant therapy in multivariate analysis (P = .0201). RHAMM-positive tumor buds were associated with frequent lymphatic invasion (P = .0007), higher tumor grade (P = .0296), and nodal metastasis (P = .0364). Importantly, the prognostic impact of RHAMM expression in tumor buds was maintained independently of the number of tumor buds found in an individual case (P = .0246). No impact of KRAS/BRAF mutation, mismatch repair deficiency and CpG island methylation was observed. RHAMM expression identifies an aggressive subpopulation of tumor budding cells and is an independent adverse prognostic factor for CRC patients. These data support ongoing efforts to develop RHAMM as a target for precision therapy.
Resumo:
Recent years have led to increasing interest and appreciation of the possible importance of single cell heterogeneity in various biological processes. One of the examples of phenotypic heterogeneity in bacterial populations is antibiotic tolerant persister cells. Such an antibiotic tolerance phenotype is of considerable clinical relevance since dormant bacteria can re-establish infections rapidly after the antibiotic treatment has been terminated. Up to now mechanisms for establishing the persistence phenomenon in bacteria have remained largely enigmatic. Persisters are cells considered to be in a dormant state with down regulated gene expression. Only recently small regulatory RNAs (sRNAs) have been appreciated as important regulators of gene expression in response to environmental stimuli and several theoretical studies have suggested a possible involvement of sRNAs in the mechanisms of regulated heterogeneity in bacteria. We have experimentally addressed this potential link between sRNAs and persistence/dormancy in E. coli as an example of heterogeneity. Beside classical sRNAs we are focusing also on sRNAs directly associating with and possibly regulating the ribosome, the central enzyme of gene expression. The persister and dormant cell specific sRNA profile is studied by the comparative analysis of sRNA profile changes of the whole bacterial population after antibiotic killing. From RNA-Seq data ~ 25 000 potentially stable RNA fragments were identified and initial analysis predicted ~300 of them to be dormant/persister cell specific. After further evaluation the most prominent dormant/persister cell specific sRNAs are functionally characterized and their potential role in the persistence/dormancy will be evaluated by applying genetic, molecular and biochemical tools. The potential results of this project will provide a better understanding on the molecular mechanism of bacterial persistence/dormancy and on the role of ribosome-bound sRNA molecules in fine-tuning gene expression.
Resumo:
Recent years have led to increasing interest and appreciation of the possible importance of single cell heterogeneity in various biological processes. One of the examples of phenotypic heterogeneity in bacterial populations is antibiotic tolerant persister cells. Such an antibiotic tolerance phenotype is of considerable clinical relevance since dormant bacteria can re-establish infections rapidly after the antibiotic treatment has been terminated. Up to now mechanisms for establishing the persistence phenomenon in bacteria have remained largely enigmatic. Persisters are cells considered to be in a dormant state with down regulated gene expression. Only recently small regulatory RNAs (sRNAs) have been appreciated as important regulators of gene expression in response to environmental stimuli and several theoretical studies have suggested a possible involvement of sRNAs in the mechanisms of regulated heterogeneity in bacteria. We have experimentally addressed this potential link between sRNAs and persistence/dormancy in E. coli as an example of heterogeneity. Beside classical sRNAs we are focusing also on sRNAs directly associating with and possibly regulating the ribosome, the central enzyme of gene expression. The persister and dormant cell specific sRNA profile is studied by the comparative analysis of sRNA profile changes of the whole bacterial population after antibiotic killing. From RNA-Seq data ~ 25 000 potentially stable RNA fragments were identified and initial analysis predicted ~300 of them to be dormant/persister cell specific. After further evaluation the most prominent dormant/persister cell specific sRNAs are functionally characterized and their potential role in the persistence/dormancy will be evaluated by applying genetic, molecular and biochemical tools. The potential results of this project will provide a better understanding on the molecular mechanism of bacterial persistence/dormancy and on the role of ribosome-bound sRNA molecules in fine-tuning gene expression.