51 resultados para shallow lakes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research the taxonomic structure of diatoms in sediments of high mountain lakes was studied. These lakes are located in Chile between 32°49' and 38°48' S in the Andean Cordillera. A total of 99 diatom taxa distributed in 48 genera were identified and all this taxa are cosmopolitan excepting a Eunotia andinofrequens, Gomphonema punae, Pinnularia araucanensis and Pinnularia acidicola, which are know only for the Southern Hemisphere. The assemblages of diatoms were different in the studied lakes. So the high mountain lakes Ocho, Huifa, Ensueño and Negra, dominated benthic diatoms which are typical of oligotrophic and acid waters as Achnanthidium exiguum, Achnanthidium minutissimum, Encyonema minutum, Pinnularia acidicola and Planothidium lanceolatum. In the assemblages from lakes Galletué, Icalma and Laja planktonic diatoms were more abundant, which are common in alkaline and mesotrophic waters, e.g., Asterionella formosa, Aulacoseira distans, Aulacoseira granulata, Cyclotella stelligera and Rhopalodia gibba.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution and highly precise age models for recent lake sediments (last 100–150 years) are essential for quantitative paleoclimate research. These are particularly important for sedimentological and geochemical proxies, where transfer functions cannot be established and calibration must be based upon the relation of sedimentary records to instrumental data. High-precision dating for the calibration period is most critical as it determines directly the quality of the calibration statistics. Here, as an example, we compare radionuclide age models obtained on two high-elevation glacial lakes in the Central Chilean Andes (Laguna Negra: 33°38′S/70°08′W, 2,680 m a.s.l. and Laguna El Ocho: 34°02′S/70°19′W, 3,250 m a.s.l.). We show the different numerical models that produce accurate age-depth chronologies based on 210Pb profiles, and we explain how to obtain reduced age-error bars at the bottom part of the profiles, i.e., typically around the end of the 19th century. In order to constrain the age models, we propose a method with five steps: (i) sampling at irregularly-spaced intervals for 226Ra, 210Pb and 137Cs depending on the stratigraphy and microfacies, (ii) a systematic comparison of numerical models for the calculation of 210Pb-based age models: constant flux constant sedimentation (CFCS), constant initial concentration (CIC), constant rate of supply (CRS) and sediment isotope tomography (SIT), (iii) numerical constraining of the CRS and SIT models with the 137Cs chronomarker of AD 1964 and, (iv) step-wise cross-validation with independent diagnostic environmental stratigraphic markers of known age (e.g., volcanic ash layer, historical flood and earthquakes). In both examples, we also use airborne pollutants such as spheroidal carbonaceous particles (reflecting the history of fossil fuel emissions), excess atmospheric Cu deposition (reflecting the production history of a large local Cu mine), and turbidites related to historical earthquakes. Our results show that the SIT model constrained with the 137Cs AD 1964 peak performs best over the entire chronological profile (last 100–150 years) and yields the smallest standard deviations for the sediment ages. Such precision is critical for the calibration statistics, and ultimately, for the quality of the quantitative paleoclimate reconstruction. The systematic comparison of CRS and SIT models also helps to validate the robustness of the chronologies in different sections of the profile. Although surprisingly poorly known and under-explored in paleolimnological research, the SIT model has a great potential in paleoclimatological reconstructions based on lake sediments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The marine aragonite cycle has been included in the global biogeochemical model PISCES to study the role of aragonite in shallow water CaCO3 dissolution. Aragonite production is parameterized as a function of mesozooplankton biomass and aragonite saturation state of ambient waters. Observation-based estimates of marine carbonate production and dissolution are well reproduced by the model and about 60% of the combined CaCO3 water column dissolution from aragonite and calcite is simulated above 2000 m. In contrast, a calcite-only version yields a much smaller fraction. This suggests that the aragonite cycle should be included in models for a realistic representation of CaCO3 dissolution and alkalinity. For the SRES A2 CO2 scenario, production rates of aragonite are projected to notably decrease after 2050. By the end of this century, global aragonite production is reduced by 29% and total CaCO3 production by 19% relative to pre-industrial. Geographically, the effect from increasing atmospheric CO2, and the subsequent reduction in saturation state, is largest in the subpolar and polar areas where the modeled aragonite production is projected to decrease by 65% until 2100.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over recent decades, palaeolimnological records from remote sites have provided convincing evidence for the onset and development of several facets of global environmental change. Remote lakes, defined here as those occurring in high latitude or high altitude regions, have the advantage of not being overprinted by local anthropogenic processes. As such, many of these sites record broad-scale environmental changes, frequently driven by regime shifts in the Earth system. Here, we review a selection of studies from North America and Europe and discuss their broader implications. The history of investigation has evolved synchronously with the scope and awareness of environmental problems. An initial focus on acid deposition switched to metal and other types of pollutants, then climate change and eventually to atmospheric deposition-fertilising effects. However, none of these topics is independent of the other, and all of them affect ecosystem function and biodiversity in profound ways. Currently, remote lake palaeolimnology is developing unique datasets for each region investigated that benchmark current trends with respect to past, purely natural variability in lake systems. Fostering conceptual and methodological bridges with other environmental disciplines will upturn contribution of remote lake palaeolimnology in solving existing and emerging questions in global change science and planetary stewardship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding past methane dynamics in arctic wetlands and lakes is crucial for estimating future methane release. Methane fluxes from lake ecosystems have increasingly been studied, yet only few reconstructions of past methane emissions from lakes are available. In this study, we develop an approach to assess changes in methane availability in lakes based on δ13C of chitinous invertebrate remains and apply this to a sediment record from a Siberian thermokarst lake. Diffusive methane fluxes from the surface of ten newly sampled Siberian lakes and seven previously studied Swedish lakes were compared to taxon-specific δ13C values of invertebrate remains from lake surface sediments to investigate whether these invertebrates assimilated 13C-depleted carbon typical for methane. Remains of chironomid larvae of the tribe Orthocladiinae that, in the study lakes, mainly assimilate plant-derived carbon had higher δ13C than other invertebrate groups. δ13C of other invertebrates such as several chironomid groups (Chironomus, Chironomini, Tanytarsini, and Tanypodinae), cladocerans (Daphnia), and ostracods were generally lower. δ13C of Chironomini and Daphnia, and to a lesser extent Tanytarsini was variable in the lakes and lower at sites with higher diffusive methane fluxes. δ13C of Chironomini, Tanytarsini, and Daphnia were correlated significantly with diffusive methane flux in the combined Siberian and Swedish dataset (r = −0.72, p = 0.001, r = −0.53, p = 0.03, and r = −0.81, p < 0.001, respectively), suggesting that δ13C in these invertebrates was affected by methane availability. In a second step, we measured δ13C of invertebrate remains from a sediment record of Lake S1, a shallow thermokarst lake in northeast Siberia. In this record, covering the past ca 1000 years, δ13C of taxa most sensitive to methane availability (Chironomini, Tanytarsini, and Daphnia) was lowest in sediments deposited from ca AD 1250 to ca AD 1500, and after AD 1970, coinciding with warmer climate as indicated by an independent local temperature record. As a consequence the offset in δ13C between methane-sensitive taxa and bulk organic matter was higher in these sections than in other parts of the core. In contrast, δ13C of other invertebrate taxa did not show this trend. Our results suggest higher methane availability in the study lake during warmer periods and that thermokarst lakes can respond dynamically in their methane output to changing environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continental evaporation is a significant and dynamic flux within the atmospheric water budget, but few methods provide robust observational constraints on the large-scale hydroclimatological and hydroecological impacts of this ‘recycled-water' flux. We demonstrate a geospatial analysis that provides such information, using stable isotope data to map the distribution of recycled water in shallow aquifers downwind from Lake Michigan. The δ2H and δ18O values of groundwater in the study region decrease from south to north, as expected based on meridional gradients in climate and precipitation isotope ratios. In contrast, deuterium excess (d = δ2H − 8 × δ18O) values exhibit a significant zonal gradient and finer-scale spatially patterned variation. Local d maxima occur in the northwest and southwest corners of the Lower Peninsula of Michigan, where ‘lake-effect' precipitation events are abundant. We apply a published model that describes the effect of recycling from lakes on atmospheric vapor d values to estimate that up to 32% of recharge into individual aquifers may be derived from recycled Lake Michigan water. Applying the model to geostatistical surfaces representing mean d values, we estimate that between 10% and 18% of the vapor evaporated from Lake Michigan is re-precipitated within downwind areas of the Lake Michigan drainage basin. Our approach provides previously unavailable observational constraints on regional land-atmosphere water fluxes in the Great Lakes Basin and elucidates patterns in recycled-water fluxes that may influence the biogeography of the region. As new instruments and networks facilitate enhanced spatial monitoring of environmental water isotopes, similar analyses can be widely applied to calibrate and validate water cycle models and improve projections of regional hydroecological change involving the coupled lake-atmosphere-land system. Read More: http://www.esajournals.org/doi/abs/10.1890/ES12-00062.1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the second half of the 20th century untreated sewage released from housing and industry into natural waters led to a degradation of many freshwater lakes and reservoirs worldwide. In order to mitigate eutrophication, wastewater treatment plants, including Fe-induced phosphorus precipitation, were implemented throughout the industrialized world, leading to reoligotrophication in many freshwater lakes. To understand and assess the effects of reoligotrophication on primary productivity, we analyzed 28 years of 14C assimilation rates, as well as other biotic and abiotic parameters, such as global radiation, nutrient concentrations and plankton densities in peri-alpine Lake Lucerne, Switzerland. Using a simple productivity-light relationship, we estimated continuous primary production and discussed the relation between productivity and observed limnological parameters. Furthermore, we assessed the uncertainty of our modeling approach based on monthly 14C assimilation measurements using Monte Carlo simulations. Results confirm that monthly sampling of productivity is sufficient for identifying long-term trends in productivity and that conservation management has successfully improved water quality during the past three decades via reducing nutrients and primary production in the lake. However, even though nutrient concentrations have remained constant in recent years, annual primary production varies significantly from year to year. Despite the fact that nutrient concentrations have decreased by more than an order of magnitude, primary production has decreased only slightly. These results suggest that primary production correlates well to nutrients availability but meteorological conditions lead to interannual variability regardless of the trophic status of the lake. Accordingly, in oligotrophic freshwaters meteorological forcing may reduce productivity impacting on the entire food chain of the ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most estimates of diffusive flux (F) of methane (CH4) and carbon dioxide (CO2) from lakes are based on single-point flux chamber measurements or on piston velocity (k) modeled from wind speed and single-point measurements of surface water gas concentrations (C-aq). We analyzed spatial variability of F of CH4 and CO2, as well as C-aq and k in 22 European lakes during late summer. F and k were higher in the lake centers, leading to considerable bias when extrapolating single-point chamber measurements to whole-lake estimates. The ratio of our empirical k estimates to wind speed-modeled k was related to lake size and shape, suggesting a lake morphology effect on the relationship between wind speed and k. This indicates that the error inherent to established wind speed models can be reduced by determining k and C-aq at multiple sites on lakes to calibrate wind speed-modeled k to the local system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we investigate sedimentary records from four small inland lakes located in the southern Cascadia forearc region for evidence of earthquakes. Three of these lakes are in the Klamath Mountains near the Oregon–California border, and one is in the central Oregon Coast range. The sedimentary sequences recovered from these lakes are composed of normal lake sediment interbedded with disturbance event layers. The thickest of these layers are graded, and appear to be turbidites or linked debrites (turbidites with a basal debris-flow deposit), suggesting rapid deposition. Variations in particle size and organic content of these layers are reflected in the density and magnetic susceptibility data. The frequency and timing of these events, based on radiocarbon ages from detrital organics, is similar to the offshore seismogenic turbidite record from trench and slope basin cores along the Cascadia margin. Stratigraphic correlation of these anomalous deposits based on radiocarbon ages, down-core density, and magnetic susceptibility data between lake and offshore records suggest synchronous triggering. The areal extent and multiple depositional environments over which these events appear to correlate suggest that these deposits were most likely caused by shaking during great Cascadia earthquakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Lakes Prespa and Ohrid, in the Balkan region, are considered to be amongst the oldest lakes in Europe. Both lakes are hydraulically connected via karst aquifers. From Lake Ohrid, several sediment cores up to 15m long have been studied over the last few years. Here, we document the first long sediment record from nearby Lake Prespa to clarify the influence of Lake Prespa on Lake Ohrid and the environmental history of the region. Radiocarbon dating and dated tephra layers provide robust age control and indicate that the 10.5m long sediment record from Lake Prespa reaches back to 48 ka. Glacial sedimentation is characterized by low organic matter content and absence of carbonates in the sediments, which indicate oligotrophic conditions in both lakes. Holocene sedimentation is characterized by particularly high carbonate content in Lake Ohrid and by particularly high organic matter content in Lake Prespa, which indicates a shift towards more mesotrophic conditions in the latter. Long-term environmental change and short-term events, such as related to the Heinrich events during the Pleistocene or the 8.2 ka cooling event during the Holocene, are well recorded in both lakes, but are only evident in certain proxies. The comparison of the sediment cores from both lakes indicates that environmental change affects particularly the trophic state of Lake Prespa due to its lower volume and water depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Here we present stable isotope data from three sediment records from lakes that lie along the Macedonian- Albanian border (Lake Prespa: 1 core, and Lake Ohrid: 2 cores). The records only overlap for the last 40 kyr, although the longest record contains the MIS 5/6 transition (Lake Ohrid). The sedimentary characteristics of both lakes differ significantly between the glacial and interglacial phases. At the end of MIS 6 Lake Ohrid’s water level was low (high �18Ocalcite) and, although productivity was increasing (high calcite content), the carbon supply was mainly from inorganic catchment rock sources (high �13Ccarb). During the last interglacial, calcite and TOC production and preservation increased, progressively lower �18Ocalcite suggest increase in humidity and lake levels until around 115 ka. During ca. 80 ka to 11 ka the lake records suggest cold conditions as indicated by negligible calcite precipitation and low organic matter content. In Lake Ohrid, �13Corg are complacent; in contrast, Lake Prespa shows consistently higher �13Corg suggesting a low oxidation of 13C-depleted organic matter in agreement with a general deterioration of climate conditions during the glacial. From 15 ka to the onset of the Holocene, calcite and TOC begin to increase, suggesting lake levels were probably low (high �18Ocalcite). In the Holocene (11 ka to present) enhanced productivity is manifested by high calcite and organic matter content. All three cores show an early Holocene characterised by low �18Ocalcite, apart from the very early Holocene phase in Prespa where the lowest �18Ocalcite occurs at ca. 7.5 ka, suggesting a phase of higher lake level only in (the more sensitive) Lake Prespa. From 6 ka, �18Ocalcite suggest progressive aridification, in agreement with many other records in the Mediterranean, although the uppermost sediments in one core records low �18Ocalcite which we interpret as a result of human activity. Overall, the isotope data present here confirm that these two big lakes have captured the large scale, low frequency palaeoclimate variation that is seen in Mediterranean lakes, although in detail there is much palaeoclimate information that could be gained, especially small scale, high frequency differences between this region and the Mediterranean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ancient Lake Ohrid is probably of early Pleistocene or Pliocene origin and amongst the few lakes in the world harbouring an outstanding degree of endemic biodiversity. Although there is a long history of evolutionary research in Lake Ohrid, particularly on molluscs, a mollusc fossil record has been missing up to date. For the first time, gastropod and bivalve fossils are reported from the basal, calcareous part of a 2.6 m long sediment succession (core Co1200) from the north-eastern part of Lake Ohrid. Electron spin resonance (ESR) dating of mollusc shells from the same stratigraphic level yielded an age of 130 ± 28 ka. Lithofacies III sediments, i.e. a stratigraphic subdivision comprising the basal succession of core Co1200 between 181.5–263 cm, appeared solid, greyish-white, and consisted almost entirely of silt-sized endogenic calcite (CaCO3>70%) and intact and broken mollusc shells. Here we compare the faunal composition of the thanatocoenosis with recent mollusc associations in Lake Ohrid. A total of 13 mollusc species (9 gastropod and 4 bivalve species) could be identified within Lithofacies III sediments. The value of sediment core fossils for reconstructing palaeoenvironmental settings was evaluated and the agreement between sediment and palaeontological proxies was tested. The study also aims at investigating major faunal changes since the Last Interglacial and searching for signs of extinction events. The combined findings of the ecological study and the sediment characteristics suggest deposition in a shallow water environment during the Last Interglacial. The fossil fauna exclusively included species also found in the present fauna, i.e. no extinction events are evident for this site since the Last Interglacial. The thanatocoenosis showed the highest similarity with recent Intermediate Layer (5–25 m water depth) mollusc assemblages. The demonstrated existence of a mollusc fossil record in Lake Ohrid sediment cores also has great significance for future deep drilling projects. It can be hoped that a more far reaching mollusc fossil record will then be obtained, enabling insight into the early evolutionary history of Lake Ohrid.