116 resultados para sclerosis
Resumo:
Purpose: To assess possible association between intrinsic structural damage and clinical disability by correlating spinal cord diffusion-tensor (DT) imaging data with electrophysiological parameters in patients with a diagnosis of multiple sclerosis (MS). Materials and Methods: This study was approved by the local ethical committee according to the declaration of Helsinki and written informed consent was obtained. DT images and T1- and T2-weighted images of the spinal cord were acquired in 28 healthy volunteers and 41 MS patients. Fractional anisotropy (FA) and apparent diffusion coefficients were evaluated in normal-appearing white matter (NAWM) at the cervical level and were correlated with motor-evoked potentials (n = 34). Asymmetry index was calculated for FA values with corresponding left and right regions of interest as percentage of the absolute difference between these values relative to the sum of the respective FA values. Statistical analysis included Spearman rank correlations, Mann-Whitney test, and reliability analysis. Results: Healthy volunteers had low asymmetry index (1.5%-2.2%). In MS patients, structural abnormalities were reflected by asymmetric decrease of FA (asymmetry index: 3.6%; P = .15). Frequently asymmetrically affected among MS patients was left and right central motor conduction time (CMCT) to abductor digiti minimi muscle (ADMM) (asymmetry index, 15%-16%) and tibialis anterior muscle (TAM) (asymmetry index, 9.5%-14.1%). Statistically significant correlations of functional (ie, electrophysiological) and structural (ie, DT imaging) asymmetries were found (P = .005 for CMCT to ADMM; P = .007 for CMCT to TAM) for the cervical lateral funiculi, which comprise the crossed pyramidal tract. Interobserver reliability for DT imaging measurements was excellent (78%-87%). Conclusion: DT imaging revealed asymmetric anatomic changes in spinal cord NAWM, which corresponded to asymmetric electrophysiological deficits for both arms and legs, and reflected a specific structure-function relationship in the human spinal cord. © RSNA, 2013.
Resumo:
Dysferlin is a muscle protein involved in cell membrane repair and its deficiency is associated with muscular dystrophy. We describe that dysferlin is also expressed in leaky endothelial cells. In the normal central nervous system (CNS), dysferlin is only present in endothelial cells of circumventricular organs. In the inflamed CNS of patients with multiple sclerosis (MS) or in animals with experimental autoimmune encephalomyelitis, dysferlin reactivity is induced in endothelial cells and the expression is associated with vascular leakage of serum proteins. In MS, dysferlin expression in endothelial cells is not restricted to vessels with inflammatory cuffs but is also present in noninflamed vessels. In addition, many blood vessels with perivascular inflammatory infiltrates lack dysferlin expression in inactive lesions or in the normal-appearing white matter. In vitro, dysferlin can be induced in endothelial cells by stimulation with tumor necrosis factor-alpha. Hence, dysferlin is not only a marker for leaky brain vessels, but also reveals dissociation of perivascular inflammatory infiltrates and blood-brain barrier disturbance in multiple sclerosis.
Resumo:
Innate immune receptors are crucial for defense against microorganisms. Recently, a cross-talk between innate and adaptive immunity has been considered. Here, we provide first evidence for a role of the key innate immune receptor, LPS receptor (CD14) in pathophysiology of experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis. Indicating a functional importance in vivo, we show that CD14 deficiency increased clinical symptoms in active experimental autoimmune encephalomyelitis. Consistent with these observations, CD14 deficient mice exhibited a markedly enhanced infiltration of monocytes and neutrophils in brain and spinal cord. Moreover, we observed an increased immunoreactivity of CD14 in biopsy and post mortem brain tissues of multiple sclerosis patients compared to age-matched controls. Thus, the key innate immune receptor, CD14, may be of pathophysiological relevance in experimental autoimmune encephalomyelitis and multiple sclerosis.
Resumo:
OBJECTIVE: To compare the effects of intravenous methylprednisolone (IVMP) in patients with relapsing-remitting (RR-MS), secondary progressive (SP-MS), and primary progressive multiple sclerosis (PP-MS). METHODS: Clinical and neurophysiological follow up was undertaken in 24 RR-MS, eight SP-MS, and nine PP-MS patients receiving Solu-Medrol 500 mg/d over five days for exacerbations involving the motor system. Motor evoked potentials (MEPs) were used to measure central motor conduction time (CMCT) and the triple stimulation technique (TST) was applied to assess conduction deficits. The TST allows accurate quantification of the number of conducting central motor neurones, expressed by the TST amplitude ratio. RESULTS: There was a significant increase in TST amplitude ratio in RR-MS (p<0.001) and SP-MS patients (p<0.02) at day 5, paralleling an increase in muscle force. TST amplitude ratio and muscle force remained stable at two months. In PP-MS, TST amplitude ratio and muscle force did not change. CMCT did not change significantly in any of the three groups. CONCLUSIONS: In RR-MS and SP-MS, IVMP is followed by a prompt increase in conducting central motor neurones paralleled by improvement in muscle force, which most probably reflects partial resolution of central conduction block. The lack of similar clinical and neurophysiological changes in PP-MS corroborates previous clinical reports on limited IVMP efficacy in this patient group and points to pathophysiological differences underlying exacerbations in PP-MS.
Resumo:
OBJECTIVE: To determine the accuracy of magnetic resonance imaging criteria for the early diagnosis of multiple sclerosis in patients with suspected disease. DESIGN: Systematic review. DATA SOURCES: 12 electronic databases, citation searches, and reference lists of included studies. Review methods Studies on accuracy of diagnosis that compared magnetic resonance imaging, or diagnostic criteria incorporating such imaging, to a reference standard for the diagnosis of multiple sclerosis. RESULTS: 29 studies (18 cohort studies, 11 other designs) were included. On average, studies of other designs (mainly diagnostic case-control studies) produced higher estimated diagnostic odds ratios than did cohort studies. Among 15 studies of higher methodological quality (cohort design, clinical follow-up as reference standard), those with longer follow-up produced higher estimates of specificity and lower estimates of sensitivity. Only two such studies followed patients for more than 10 years. Even in the presence of many lesions (> 10 or > 8), magnetic resonance imaging could not accurately rule multiple sclerosis in (likelihood ratio of a positive test result 3.0 and 2.0, respectively). Similarly, the absence of lesions was of limited utility in ruling out a diagnosis of multiple sclerosis (likelihood ratio of a negative test result 0.1 and 0.5). CONCLUSIONS: Many evaluations of the accuracy of magnetic resonance imaging for the early detection of multiple sclerosis have produced inflated estimates of test performance owing to methodological weaknesses. Use of magnetic resonance imaging to confirm multiple sclerosis on the basis of a single attack of neurological dysfunction may lead to over-diagnosis and over-treatment.
Resumo:
OBJECTIVES: In patients with a clinically isolated syndrome (CIS), the time interval to convert to clinically definite multiple sclerosis (CDMS) is highly variable. Individual and geographical prognostic factors remain to be determined. Whether anti-myelin antibodies may predict the risk of conversion to CDMS in Swiss CIS patients of the canton Berne was the subject of the study. METHODS: Anti-myelin oligodendrocyte glycoprotein and anti-myelin basic protein antibodies were determined prospectively in patients admitted to our department. RESULTS: After a mean follow-up of 12 months, none of nine antibody-negative, but 22 of 30 antibody-positive patients had progressed to CDMS. Beta-Interferon treatment delayed the time to conversion from a mean of 7.4 to 10.9 months. CONCLUSIONS: In a Swiss cohort, antibody-negative CIS patients have a favorable short-term prognosis, and antibody-positive patients benefit from early treatment.
Resumo:
Beneficial effects by both interferon-beta and statin treatment in patients with multiple sclerosis (MS) may be linked to interference with the Th1/Th2 cytokine balance. We determined patterns of Th1/Th2 cytokines (interleukin (IL)-1beta, IL-2, IL-6, IL-12p70, tumor-necrosis factor (TNF)-alpha and interferon-gamma, and IL-4, IL-5 and IL-10, respectively) in the serum of patients with relapsing-remitting MS treated with 250microg interferon-beta 1b or with interferon-beta plus 40mg atorvastatin. In treatment naïve patients with MS, a trend for lower TNF-alpha serum levels compared to controls was detected (P=0.08). Interferon-beta treatment increased TNF-alpha levels, while a trend for lowering of IL-5 serum levels was found (P=0.07). Addition of atorvastatin raised IL-12p70 serum levels (P<0.05). Mean levels of two Th2 cytokines (IL-4, IL-10) showed a non-significant increase after addition of atorvastatin. We conclude that interferon-beta and atorvastatin exert divergent action on Th1/Th2 serum cytokines levels in MS. Supplemental atorvastatin might promote a Th1-type response by raising IL-12p70. Further studies are required to support a Th2 cytokine shift by atorvastatin in patients with MS.
Resumo:
In 1992, it was shown that monoclonal antibodies blocking alpha(4)-integrins prevent the development of experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis (MS). As alpha(4)beta(1)-integrin was demonstrated to mediate the attachment of immune-competent cells to inflamed brain endothelium in experimental autoimmune encephalomyelitis, the therapeutic effect was attributed to the inhibition of immune cell extravasation and inflammation in the central nervous system. This novel therapeutic approach was rapidly and successfully translated into the clinic. The humanized anti-alpha(4)-integrin antibody natalizumab demonstrated an unequivocal therapeutic effect in preventing relapses and slowing down the pace of neurological deterioration in patients with relapsing-remitting MS in phase II and phase III clinical trials. The occurrence of 3 cases of progressive multifocal leukoencephalopathy in patients treated with natalizumab led to the voluntary withdrawal of the drug from the market. After a thorough safety evaluation of all patients receiving this drug in past and ongoing studies for MS and Crohn's disease, natalizumab again obtained approval in the US and the European Community. A treatment targeting leukocyte trafficking in MS has now re-entered the clinic. Further thorough evaluation is necessary for a better understanding of the risk-benefit balance of this new treatment option for relapsing MS. In this review, we discuss the basic mechanism of action, key clinical results of clinical trials and the emerging indication of natalizumab in MS.
Resumo:
Elimination of autoreactive T cells by apoptosis is critical for restricting immune responses to self-antigens. An errant lytic interaction between the CD95 death receptor and its ligand CD95L is presumed to be involved in the pathogenesis of multiple sclerosis (MS). Statins are promising agents for the treatment of MS and were shown to modulate levels of soluble death receptors. Here, we evaluated the in vivo effects by interferon (IFN)-beta and atorvastatin on soluble CD95 (sCD95) and sCD95L in serum of patients with MS. Concentrations of sCD95 and sCD95L did not show any differences between MS and healthy control subjects. In patients with MS, treatment with IFN-beta increased serum levels of sCD95 and sCD95L significantly (P < 0.01 and P < 0.05 respectively). Addition of atorvastatin to IFN-beta did not alter serum levels of sCD95 and sCD95L significantly. Our study suggests that atorvastatin does not affect IFN-beta-induced increases of the soluble death receptors in the serum of patients with MS.