56 resultados para rotational scaling
Resumo:
Rotational atherectomy has been regaining interest over the last couple of years after it almost has disappeared from most interventional catheterization laboratories for several years due to failure to prove its original concept of improving long term results of percutaneous coronary interventions (PCI) as was repeatedly shown in studies in the 1990s. Its revival coupled the introduction of drug-eluting stents (DES); these devices have led to treating much more complex lesions and high-risk patients by PCI. However, real-world experience suggested that off-label use of DES is associated with a higher rate of early and late stent thrombosis. Therefore, more attention is now being paid to the initial implantation technique of DES including aggressive lesion preparation to facilitate stent delivery and expansion. The limited studies with rot-ablation and DES showed promising results with no long term safety concerns. In these studies, a subtle observation was made suggesting that rot-ablation prior to DES implantation in such lesions may have an add-on effect on long term outcome compared to DES alone. An ongoing multicenter study is investigating such effect among complex calcified coronary lesions. Even if this additive benefit does not prove true, rot-ablation remains an efficient tool for preparing certain lesions to facilitate effective and safe DES implantation. Therefore, interventional training programs should focus on this difficult technique to bridge the gap of experience which resulted from neglecting it for several years. In this regard, dedicated courses at experienced sites as well as medical simulation may be appropriate.
Resumo:
Double fenestration of the anterior communicating artery (ACoA) complex associated with an aneurysm is a very rare finding and is usually caused by ACoA duplication and the presence of a median artery of the corpus callosum (MACC). We present a patient in whom double fenestration was not associated with ACoA duplication or even with MACC, representing therefore, a previously unreported anatomic variation. A 43 year old woman experienced sudden headache and the CT scans showed subarachnoid haemorrhage (SAH). On admission, her clinical condition was consistent with Hunt and Hess grade II. Conventional digital subtraction angiography (DSA) was performed and revealed multiple intracranial aneurysms arising from both middle cerebral arteries (MCA) and from the ACoA. Three-dimensional rotational angiography (3D-RA) disclosed a double fenestration of the ACoA complex which was missed by DSA. The patient underwent a classic pterional approach in order to achieve occlusion of both left MCA and ACoA aneurysms by surgical clipping. The post-operative period was uneventful. A rare anatomical variation characterised by a double fenestration not associated with ACoA duplication or MACC is described. The DSA images missed the double fenestration which was disclosed by 3D-RA, indicating the importance of 3D-RA in the diagnosis and surgical planning of intracranial aneurysms.
Resumo:
BACKGROUND: Various osteotomy techniques have been developed to correct the deformity caused by slipped capital femoral epiphysis (SCFE) and compared by their clinical outcomes. The aim of the presented study was to compare an intertrochanteric uniplanar flexion osteotomy with a multiplanar osteotomy by their ability to improve postoperative range of motion as measured by simulation of computed tomographic data in patients with SCFE. METHODS: We examined 19 patients with moderate or severe SCFE as classified based on slippage angle. A computer program for the simulation of movement and osteotomy developed in our laboratory was used for study execution. According to a 3-dimensional reconstruction of the computed tomographic data, the physiological range was determined by flexion, abduction, and internal rotation. The multiplanar osteotomy was compared with the uniplanar flexion osteotomy. Both intertrochanteric osteotomy techniques were simulated, and the improvements of the movement range were assessed and compared. RESULTS: The mean slipping and thus correction angles measured were 25 degrees (range, 8-46 degrees) inferior and 54 degrees (range, 32-78 degrees) posterior. After the simulation of multiplanar osteotomy, the virtually measured ranges of motion as determined by bone-to-bone contact were 61 degrees for flexion, 57 degrees for abduction, and 66 degrees for internal rotation. The simulation of the uniplanar flexion osteotomy achieved a flexion of 63 degrees, an abduction of 36 degrees, and an internal rotation of 54 degrees. CONCLUSIONS: Apart from abduction, the improvement in the range of motion by a uniplanar flexion osteotomy is comparable with that of the multiplanar osteotomy. However, the improvement in flexion for the simulation of both techniques is not satisfactory with regard to the requirements of normal everyday life, in contrast to abduction and internal rotation. LEVEL OF EVIDENCE: Level III, Retrospective comparative study.
Resumo:
Current advanced cloud infrastructure management solutions allow scheduling actions for dynamically changing the number of running virtual machines (VMs). This approach, however, does not guarantee that the scheduled number of VMs will properly handle the actual user generated workload, especially if the user utilization patterns will change. We propose using a dynamically generated scaling model for the VMs containing the services of the distributed applications, which is able to react to the variations in the number of application users. We answer the following question: How to dynamically decide how many services of each type are needed in order to handle a larger workload within the same time constraints? We describe a mechanism for dynamically composing the SLAs for controlling the scaling of distributed services by combining data analysis mechanisms with application benchmarking using multiple VM configurations. Based on processing of multiple application benchmarks generated data sets we discover a set of service monitoring metrics able to predict critical Service Level Agreement (SLA) parameters. By combining this set of predictor metrics with a heuristic for selecting the appropriate scaling-out paths for the services of distributed applications, we show how SLA scaling rules can be inferred and then used for controlling the runtime scale-in and scale-out of distributed services. We validate our architecture and models by performing scaling experiments with a distributed application representative for the enterprise class of information systems. We show how dynamically generated SLAs can be successfully used for controlling the management of distributed services scaling.