28 resultados para renin-angiotensin system
Resumo:
A variety of chronic kidney diseases tend to progress towards end-stage kidney disease. Progression is largely due to factors unrelated to the initial disease, including systemic hypertension and proteinuria. Drugs that block the renin-angiotensin II-aldosterone system, either ACE inhibitors or angiotensin II receptor antagonists, reduce both BP and proteinuria and appear superior to a more conventional antihypertensive treatment regimen in preventing progression to end-stage kidney disease. The most recent recommendations state that the BP goal in children with chronic kidney disease is the corresponding 90th centile for body height, age, and gender.Since satisfactory BP control is often not achieved, the mnemonic acronym DELTAREPROSI was generated to recall the following tips for the practical management of hypertension and proteinuria in childhood chronic renal parenchymal disease: DEfinition of hypertension and Low blood pressure TArget in REnal disease (90th centile calculated by means of simple formulas), potential of drugs inhibiting the REnin-angiotensin II-aldosterone system in hypertension and PROteinuria, advantages of SImplified treatment regimens and escalating the doses every SIx weeks.
Resumo:
Flash pulmonary edema (FPE) is a general clinical term used to describe a particularly dramatic form of acute decompensated heart failure. Well-established risk factors for heart failure such as hypertension, coronary ischemia, valvular heart disease, and diastolic dysfunction are associated with acute decompensated heart failure as well as with FPE. However, endothelial dysfunction possibly secondary to an excessive activity of renin-angiotensin-aldosterone system, impaired nitric oxide synthesis, increased endothelin levels, and/or excessive circulating catecholamines may cause excessive pulmonary capillary permeability and facilitate FPE formation. Renal artery stenosis particularly when bilateral has been identified has a common cause of FPE. Lack of diurnal variation in blood pressure and a widened pulse pressure have been identified as risk factors for FPE. This review is an attempt to delineate clinical and pathophysiological mechanisms responsible for FPE and to distinguish pathophysiologic, clinical, and therapeutic aspects of FPE from those of acute decompensated heart failure.
Resumo:
Alteration of neurohormonal homeostasis is a hallmark of the pathophysiology of chronic heart failure (CHF). In particular, overactivation of the renin-angiotensin-aldosterone system and the sympathetic catecholaminergic system is consistently observed. Chronic overactivation of these hormonal pathways leads to a detrimental arrhythmogenic remodeling of cardiac tissue due to dysregulation of cardiac ion channels. Sudden cardiac death resulting from ventricular arrhythmias is a major cause of mortality in patients with CHF. All the drug classes known to reduce mortality in patients with CHF are neurohormonal blockers. The aim of this review was to provide an overview of how cardiac ion channels are regulated by hormones known to play a central role in the pathogenesis of CHF.
Resumo:
Renal dysfunction represents a frequent comorbidity in patients with in chronic heart failure and is not only a strong predictor of mortality, but also causally linked to the development and progression of CHF. Mechanisms involved in the cross-talk between the kidney and the heart include the up-regulated sympathetic nerve system, activation of the renin-angiotensin-aldosterone system, vasopressin release and decreased activity of arterial baroreceptors and natriuretic peptides resulting in abnormal salt and water retention. The main therapeutic goals for patients with the so-called cardiorenal syndrome is the normalization of volume status while avoiding overdiuresis and renal dysfunction as well as the implementation of an evidence-based pharmacologic treatment to improve patient outcome. If these two goals are not achieved with conventional therapy, renal replacement therapy should be discussed in an interdisciplinary approach. All current renal replacement techniques have proved to be useful in controlling hypervolemia and ameliorating functional cardiac parameters and quality of life in patients with heart failure. Nevertheless, the influence of renal replacement therapy on long-term survival of affected patients has not been addressed in large controlled studies.
Resumo:
Standard therapy forms the basic foundation for care of dogs with glomerular disease, as it is herein recommended for use in all affected animals regardless of causation of the disease. Consensus recommendations target the evaluation and management of proteinuria, inhibition of the renin-angiotensin-aldosterone system, modification in dietary intake with special consideration for those nutrients with renal effects, diagnosis and treatment of systemic hypertension, and evaluation and management of body fluid volume status in dogs with glomerular disease.
Resumo:
Beim Karotisstimulator handelt es sich um ein Gerät, welches den Baroreflex-Mechanismus elektrisch aktiviert. Dies hat zur Folge, dass der Sympathikotonus abgeschwächt und das Renin-Angiotensin-Aldosteron-System gedämpft wird, was eine Reduktion des Blutdrucks und der Herzfrequenz bewirkt. Die Baroreflex-Aktivierungstherapie (BAT) führt im Langzeitverlauf zu einer dauerhaften durchschnittlichen Senkung des systolischen Blutdrucks von 40–50 mmHg nach vier Jahren. Bei den Patienten konnte ausser der blutdrucksenkenden Wirkung eine Reduktion der Herzmuskeldicke festgestellt werden. Die Wirkung bei Patienten mit Herzinsuffizienz wird zurzeit geprüft. Die Implantation des Geräts gilt als sicher. Der Karotisstimulator ist nun in mehreren europäischen Ländern erhältlich.
Resumo:
Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.
Resumo:
The success rate in the development of psychopharmacological compounds is insufficient. Two main reasons for failure have been frequently identified: 1) treating the wrong patients and 2) using the wrong dose. This is potentially based on the known heterogeneity among patients, both on a syndromal and a biological level. A focus on personalized medicine through better characterization with biomarkers has been successful in other therapeutic areas. Nevertheless, obstacles toward this goal that exist are 1) the perception of a lack of validation, 2) the perception of an expensive and complicated enterprise, and 3) the perception of regulatory hurdles. The authors tackle these concerns and focus on the utilization of biomarkers as predictive markers for treatment outcome. The authors primarily cover examples from the areas of major depression and schizophrenia. Methodologies covered include salivary and plasma collection of neuroendocrine, metabolic, and inflammatory markers, which identified subgroups of patients in the Netherlands Study of Depression and Anxiety. A battery of vegetative markers, including sleep-electroencephalography parameters, heart rate variability, and bedside functional tests, can be utilized to characterize the activity of a functional system that is related to treatment refractoriness in depression (e.g., the renin-angiotensin-aldosterone system). Actigraphy and skin conductance can be utilized to classify patients with schizophrenia and provide objective readouts for vegetative activation as a functional marker of target engagement. Genetic markers, related to folate metabolism, or folate itself, has prognostic value for the treatment response in patients with schizophrenia. Already, several biomarkers are routinely collected in standard clinical trials (e.g., blood pressure and plasma electrolytes), and appear to be differentiating factors for treatment outcome. Given the availability of a wide variety of markers, the further development and integration of such markers into clinical research is both required and feasible in order to meet the benefit of personalized medicine. This article is based on proceedings from the "Taking Personalized Medicine Seriously-Biomarker Approaches in Phase IIb/III Studies in Major Depression and Schizophrenia" session, which was held during the 10th Annual Scientific Meeting of the International Society for Clinical Trials Meeting (ISCTM) in Washington, DC, February 18 to 20, 2014.
Resumo:
Baroreceptor stimulators are novel implantable devices that activate the carotid baroreceptor reflex. This results in a decrease in activity of the sympathetic nervous system and inhibition of the renin-angiotensin-aldosterone system. In patients with drug-resistant hypertension, permanent electrical activation of the baroreceptor reflex results in blood pressure reduction and cardiac remodeling. For correct intraoperative electrode placement at the carotid bifurcation, the baroreceptor reflex needs to be activated several times. Many common anesthetic agents, such as inhalation anesthetics and propofol dampen or inhibit the baroreceptor reflex and complicate or even prevent successful placement. Therefore, a specific anesthesia and pharmacological management is necessary to ensure successful implantation of baroreceptor reflex stimulators.
Resumo:
In contrast to the current belief that angiotensin II (Ang II) interacts with the sympathetic nervous system only as a circulating hormone, we document here the existence of endogenous Ang II in the neurons of rat and human sympathetic coeliac ganglia and their angiotensinergic innervation with mesenteric resistance blood vessels. Angiotensinogen - and angiotensin converting enzyme-mRNA were detected by using quantitative real time polymerase chain reaction in total RNA extracts of rat coeliac ganglia, while renin mRNA was untraceable. Cathepsin D, a protease responsible for cleavage beneath other substrates also angiotensinogen to angiotensin I, was successfully detected in rat coeliac ganglia indicating the possibility of existence of alternative pathways. Angiotensinogen mRNA was also detected by in situ hybridization in the cytoplasm of neurons of rat coeliac ganglia. Immunoreactivity for Ang II was demonstrated in rat and human coeliac ganglia as well as with mesenteric resistance blood vessels. By using confocal laser scanning microscopy we were able to demonstrate the presence of angiotensinergic synapses en passant along side of vascular smooth muscle cells. Our findings indicate that Ang II is synthesized inside the neurons of sympathetic coeliac ganglia and may act as an endogenous neurotransmitter locally with the mesenteric resistance blood vessels.
Resumo:
BACKGROUND: Increased aldosterone concentrations and volume expansion of normal pregnancies are hallmarks of normal pregnancies and blunted in pre-eclampsia. Accordingly, we hypothesized an active mineralocorticoid system to protect from pre-eclampsia. METHODS: In pregnant women (normotensive n = 44; pre-eclamptic n = 48), blood pressure, urinary tetrahydro-aldosterone excretion and activating polymorphisms (SF-1 site and intron 2) of the aldosterone synthase gene (CYP11B2) were determined; 185 non-pregnant normotensive individuals served as control. Amino acid-changing polymorphisms of the DNA- and agonist-binding regions of the mineralocorticoid receptor were evaluated by RT-PCR, SSCP and sequencing. RESULTS: Urinary tetrahydro-aldosterone excretion was reduced in pre-eclampsia as compared to normal pregnancy (P < 0.05). It inversely correlated with blood pressure (r = 0.99, P < 0.04). Homozygosity for activating CYP11B2 polymorphisms was preferably present in normotensive as compared to pre-eclamptic pregnancies, identified (intron 2, P = 0.005; SF-1 site, P = 0.016). Two mutant haplotypes decreased the risk of developing pre-eclampsia (RR 0.16; CI 0.05-0.54; P < 0.001). In contrast, intron 2 wild type predisposed to pre-eclampsia (P < 0.0015). No functional mineralocorticoid receptor mutant has been observed. CONCLUSIONS: High aldosterone availability is associated with lower maternal blood pressure. In line with this observation, gain-of-function variants of the CYP11B2 reduce the risk of developing pre-eclampsia. Mutants of the mineralocorticoid receptor cannot explain the frequent syndrome of pre-eclampsia.