36 resultados para refractive errors


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The planning of refractive surgical interventions is a challenging task. Numerical modeling has been proposed as a solution to support surgical intervention and predict the visual acuity, but validation on patient specific intervention is missing. The purpose of this study was to validate the numerical predictions of the post-operative corneal topography induced by the incisions required for cataract surgery. The corneal topography of 13 patients was assessed preoperatively and postoperatively (1-day and 30-day follow-up) with a Pentacam tomography device. The preoperatively acquired geometric corneal topography – anterior, posterior and pachymetry data – was used to build patient-specific finite element models. For each patient, the effects of the cataract incisions were simulated numerically and the resulting corneal surfaces were compared to the clinical postoperative measurements at one day and at 30-days follow up. Results showed that the model was able to reproduce experimental measurements with an error on the surgically induced sphere of 0.38D one day postoperatively and 0.19D 30 days postoperatively. The standard deviation of the surgically induced cylinder was 0.54D at the first postoperative day and 0.38D 30 days postoperatively. The prediction errors in surface elevation and curvature were below the topography measurement device accuracy of ±5μm and ±0.25D after the 30-day follow-up. The results showed that finite element simulations of corneal biomechanics are able to predict post cataract surgery within topography measurement device accuracy. We can conclude that the numerical simulation can become a valuable tool to plan corneal incisions in cataract surgery and other ophthalmosurgical procedures in order to optimize patients' refractive outcome and visual function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a weighted up-down procedure, in each of eight conditions 28 participants compared durations of auditory (noise bursts) or visual (LED flashes) intervals; filled or unfilled with 3-ms markers; with or without feedback. Standards (Sts) were 100 and 1000 ms, and the ISI 900 ms. Intermixedly, presentation orders were St-Comparison (Co) and Co-St. TOEs were positive for St=100-ms and negative for St=1000 ms. Weber fractions (WFs, JND/St) were lowered by feedback. For visual-filled and visual-empty, WFs were highest for St=100 ms. For auditory-filled and visual-empty, St interacted with Order: lowest WFs occurred for St-Co with St=1000 ms, but for Co-St with St=100 ms. Lowest average WFs occurred with St-Co for visual-filled, but with Co-St for visual-empty. The results refute the generalization of better discrimination with St-Co than with Co-St (”type-B effect”), and support the notion of sensation weighting: flexibly differential impact weights of the compared durations in generating the response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The COSMIC-2 mission is a follow-on mission of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) with an upgraded payload for improved radio occultation (RO) applications. The objective of this paper is to develop a near-real-time (NRT) orbit determination system, called NRT National Chiao Tung University (NCTU) system, to support COSMIC-2 in atmospheric applications and verify the orbit product of COSMIC. The system is capable of automatic determinations of the NRT GPS clocks and LEO orbit and clock. To assess the NRT (NCTU) system, we use eight days of COSMIC data (March 24-31, 2011), which contain a total of 331 GPS observation sessions and 12 393 RO observable files. The parallel scheduling for independent GPS and LEO estimations and automatic time matching improves the computational efficiency by 64% compared to the sequential scheduling. Orbit difference analyses suggest a 10-cm accuracy for the COSMIC orbits from the NRT (NCTU) system, and it is consistent as the NRT University Corporation for Atmospheric Research (URCA) system. The mean velocity accuracy from the NRT orbits of COSMIC is 0.168 mm/s, corresponding to an error of about 0.051 μrad in the bending angle. The rms differences in the NRT COSMIC clock and in GPS clocks between the NRT (NCTU) and the postprocessing products are 3.742 and 1.427 ns. The GPS clocks determined from a partial ground GPS network [from NRT (NCTU)] and a full one [from NRT (UCAR)] result in mean rms frequency stabilities of 6.1E-12 and 2.7E-12, respectively, corresponding to range fluctuations of 5.5 and 2.4 cm and bending angle errors of 3.75 and 1.66 μrad .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upper-air observations are a fundamental data source for global atmospheric data products, but uncertainties, particularly in the early years, are not well known. Most of the early observations, which have now been digitized, are prone to a large variety of undocumented uncertainties (errors) that need to be quantified, e.g., for their assimilation in reanalysis projects. We apply a novel approach to estimate errors in upper-air temperature, geopotential height, and wind observations from the Comprehensive Historical Upper-Air Network for the time period from 1923 to 1966. We distinguish between random errors, biases, and a term that quantifies the representativity of the observations. The method is based on a comparison of neighboring observations and is hence independent of metadata, making it applicable to a wide scope of observational data sets. The estimated mean random errors for all observations within the study period are 1.5 K for air temperature, 1.3 hPa for pressure, 3.0 ms−1for wind speed, and 21.4° for wind direction. The estimates are compared to results of previous studies and analyzed with respect to their spatial and temporal variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many field or laboratory situations, well-mixed reservoirs like, for instance, injection or detection wells and gas distribution or sampling chambers define boundaries of transport domains. Exchange of solutes or gases across such boundaries can occur through advective or diffusive processes. First we analyzed situations, where the inlet region consists of a well-mixed reservoir, in a systematic way by interpreting them in terms of injection type. Second, we discussed the mass balance errors that seem to appear in case of resident injections. Mixing cells (MC) can be coupled mathematically in different ways to a domain where advective-dispersive transport occurs: by assuming a continuous solute flux at the interface (flux injection, MC-FI), or by assuming a continuous resident concentration (resident injection). In the latter case, the flux leaving the mixing cell can be defined in two ways: either as the value when the interface is approached from the mixing-cell side (MC-RT -), or as the value when it is approached from the column side (MC-RT +). Solutions of these injection types with constant or-in one case-distance-dependent transport parameters were compared to each other as well as to a solution of a two-layer system, where the first layer was characterized by a large dispersion coefficient. These solutions differ mainly at small Peclet numbers. For most real situations, the model for resident injection MC-RI + is considered to be relevant. This type of injection was modeled with a constant or with an exponentially varying dispersion coefficient within the porous medium. A constant dispersion coefficient will be appropriate for gases because of the Eulerian nature of the usually dominating gaseous diffusion coefficient, whereas the asymptotically growing dispersion coefficient will be more appropriate for solutes due to the Lagrangian nature of mechanical dispersion, which evolves only with the fluid flow. Assuming a continuous resident concentration at the interface between a mixing cell and a column, as in case of the MC-RI + model, entails a flux discontinuity. This flux discontinuity arises inherently from the definition of a mixing cell: the mixing process is included in the balance equation, but does not appear in the description of the flux through the mixing cell. There, only convection appears because of the homogeneous concentration within the mixing cell. Thus, the solute flux through a mixing cell in close contact with a transport domain is generally underestimated. This leads to (apparent) mass balance errors, which are often reported for similar situations and erroneously used to judge the validity of such models. Finally, the mixing cell model MC-RI + defines a universal basis regarding the type of solute injection at a boundary. Depending on the mixing cell parameters, it represents, in its limits, flux as well as resident injections. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Refractive losses in laser-produced plasmas used as gain media are caused by electron density gradients, and limit the energy transport range. The pump pulse is thus deflected from the high-gain region and the short wavelength laser signal also steers away, causing loss of collimation. A Hohlraum used as a target makes the plasma homogeneous and can mitigate refractive losses by means of wave-guiding. A computational study combining a hydrodynamics code and an atomic physics code is presented, which includes a ray-tracing modeling based on the eikonal theory of the trajectory equation. This study presents gain calculations based on population inversion produced by free-electron collisions exciting bound electrons into metastable levels in the 3d94d1(J = 0) → 3d94p1(J = 1) transition of Ni-like Sn. Further, the Hohlraum suggests a dramatic enhancement of the conversion efficiency of collisionally excited x-ray lasing for Ni-like Sn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE The range of patient setup errors in six dimensions detected in clinical routine for cranial as well as for extracranial treatments, were analyzed while performing linear accelerator based stereotactic treatments with frameless patient setup systems. Additionally, the need for re-verification of the patient setup for situations where couch rotations are involved was analyzed for patients treated in the cranial region. METHODS AND MATERIALS A total of 2185 initial (i.e. after pre-positioning the patient with the infrared system but before image guidance) patient setup errors (1705 in the cranial and 480 in the extracranial region) obtained by using ExacTrac (BrainLAB AG, Feldkirchen, Germany) were analyzed. Additionally, the patient setup errors as a function of the couch rotation angle were obtained by analyzing 242 setup errors in the cranial region. Before the couch was rotated, the patient setup error was corrected at couch rotation angle 0° with the aid of image guidance and the six degrees of freedom (6DoF) couch. For both situations attainment rates for two different tolerances (tolerance A: ± 0.5mm, ± 0.5°; tolerance B: ± 1.0 mm, ± 1.0°) were calculated. RESULTS The mean (± one standard deviation) initial patient setup errors for the cranial cases were -0.24 ± 1.21°, -0.23 ± 0.91° and -0.03 ± 1.07° for the pitch, roll and couch rotation axes and 0.10 ± 1.17 mm, 0.10 ± 1.62 mm and 0.11 ± 1.29 mm for the lateral, longitudinal and vertical axes, respectively. Attainment rate (all six axes simultaneously) for tolerance A was 0.6% and 13.1% for tolerance B, respectively. For the extracranial cases the corresponding values were -0.21 ± 0.95°, -0.05 ± 1.08° and -0.14 ± 1.02° for the pitch, roll and couch rotation axes and 0.15 ± 1.77 mm, 0.62 ± 1.94 mm and -0.40 ± 2.15 mm for the lateral, longitudinal and vertical axes. Attainment rate (all six axes simultaneously) for tolerance A was 0.0% and 3.1% for tolerance B, respectively. After initial setup correction and rotation of the couch to treatment position a re-correction has to be performed in 77.4% of all cases to fulfill tolerance A and in 15.6% of all cases to fulfill tolerance B. CONCLUSION The analysis of the data shows that all six axes of a 6DoF couch are used extensively for patient setup in clinical routine. In order to fulfill high patient setup accuracies (e.g. for stereotactic treatments), a 6DoF couch is recommended. Moreover, re-verification of the patient setup after rotating the couch is required in clinical routine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES The aim of this study was to identify common risk factors for patient-reported medical errors across countries. In country-level analyses, differences in risks associated with error between health care systems were investigated. The joint effects of risks on error-reporting probability were modelled for hypothetical patients with different health care utilization patterns. DESIGN Data from the Commonwealth Fund's 2010 lnternational Survey of the General Public's Views of their Health Care System's Performance in 11 Countries. SETTING Representative population samples of 11 countries were surveyed (total sample = 19,738 adults). Utilization of health care, coordination of care problems and reported errors were assessed. Regression analyses were conducted to identify risk factors for patients' reports of medical, medication and laboratory errors across countries and in country-specific models. RESULTS Error was reported by 11.2% of patients but with marked differences between countries (range: 5.4-17.0%). Poor coordination of care was reported by 27.3%. The risk of patient-reported error was determined mainly by health care utilization: Emergency care (OR = 1.7, P < 0.001), hospitalization (OR = 1.6, P < 0.001) and the number of providers involved (OR three doctors = 2.0, P < 0.001) are important predictors. Poor care coordination is the single most important risk factor for reporting error (OR = 3.9, P < 0.001). Country-specific models yielded common and country-specific predictors for self-reported error. For high utilizers of care, the probability that errors are reported rises up to P = 0.68. CONCLUSIONS Safety remains a global challenge affecting many patients throughout the world. Large variability exists in the frequency of patient-reported error across countries. To learn from others' errors is not only essential within countries but may also prove a promising strategy internationally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of memory-guided saccades in monkeys show an upward bias, while studies of antisaccades in humans show a diagonal effect, a deviation of endpoints toward the 45° diagonal. To determine if these two different spatial biases are specific to different types of saccades, we studied prosaccades, antisaccades and memory-guided saccades in humans. The diagonal effect occurred not with prosaccades but with antisaccades and memory-guided saccades with long intervals, consistent with hypotheses that it originates in computations of goal location under conditions of uncertainty. There was a small upward bias for memory-guided saccades but not prosaccades or antisaccades. Thus this bias is not a general effect of target uncertainty but a property specific to memory-guided saccades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Clinicians involved in medical errors can experience significant distress. This study aims to examine (1) how medical errors impact anaesthesiologists in key work and life domains; (2) anaesthesiologists' attitudes regarding support after errors; (3) and which anaesthesiologists are most affected by errors. METHODS This study is a mailed cross-sectional survey completed by 281 of the 542 clinically active anaesthesiologists (52% response rate) working at Switzerland's five university hospitals between July 2012 and April 2013. RESULTS Respondents reported that errors had negatively affected anxiety about future errors (51%), confidence in their ability as a doctor (45%), ability to sleep (36%), job satisfaction (32%), and professional reputation (9%). Respondents' lives were more likely to be affected as error severity increased. Ninety per cent of respondents disagreed that hospitals adequately support them in coping with the stress associated with medical errors. Nearly all of the respondents (92%) reported being interested in psychological counselling after a serious error, but many identified barriers to seeking counselling. However, there were significant differences between departments regarding error-related stress levels and attitudes about error-related support. Respondents were more likely to experience certain distress if they were female, older, had previously been involved in a serious error, and were dissatisfied with their last error disclosure. CONCLUSION Medical errors, even minor errors and near misses, can have a serious effect on clinicians. Health-care organisations need to do more to support clinicians in coping with the stress associated with medical errors.