63 resultados para real-time scheduling algorithm
Resumo:
Real-time quantitative polymerase chain reaction (qPCR) depends on precise temperature control of the sample during cycling. In the current study, we investigated how temperature variation in plate-based qPCR instruments influences qPCR results. Temperature variation was measured by amplicon melting analysis as a convenient means to assess well-to-well differences. Multiple technical replicates of several SYBR Green I-based qPCR assays allowed correlation of relative well temperature to quantification cycle. We found that inadequate template denaturation results in an inverse correlation and requires increasing the denaturation temperature, adding a DNA destabilizing agent, or pretreating with a restriction enzyme. In contrast, inadequate primer annealing results in a direct correlation and requires lowering the annealing temperature. Significant correlations were found in 18 of 25 assays. The critical nature of temperature-dependent effects was shown in a blinded study of 29 patients for the diagnosis of Prader-Willy and Angelman syndromes, where eight diagnoses were incorrect unless temperature-dependent effects were controlled. A method to detect temperature-dependent effects by pairwise comparisons of replicates in routine experiments is presented and applied. Systematic temperature errors in qPCR instruments can be recognized and their effects eliminated when high precision is required in quantitative genetic diagnostics and critical complementary DNA analyses.
Resumo:
Prediction of glycemic profile is an important task for both early recognition of hypoglycemia and enhancement of the control algorithms for optimization of insulin infusion rate. Adaptive models for glucose prediction and recognition of hypoglycemia based on statistical and artificial intelligence techniques are presented.
Resumo:
Bovine mastitis caused by Mycoplasma bovis is of great economic importance to the beef and dairy industry. Here we describe a new specific real-time PCR assay targeting the uvrC gene that was developed to directly detect M. bovis from milk and tissue samples without laborious DNA purification.
Resumo:
Contagious bovine pleuropneumonia (CBPP) is the most serious cattle disease in Africa, caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC). CBPP control strategies currently rely on vaccination with a vaccine based on live attenuated strains of the organism. Recently, an lppQ(-) mutant of the existing vaccine strain T1/44 has been developed (Janis et al., 2008). This T1lppQ(-) mutant strain is devoid of lipoprotein LppQ, a potential virulence attribute of M. mycoides subsp. mycoides SC. It is designated as a potential live DIVA (Differentiating Infected from Vaccinated Animals) vaccine strain allowing both serological and etiological differentiation. The present paper reports on the validation of a control strategy for CBPP in cattle, whereby a TaqMan real-time PCR based on the lppQ gene has been developed for the direct detection of M. mycoides subsp. mycoides SC in ex vivo bronchoalveolar lavage fluids of cows and for the discrimination of wild type strains from the lppQ(-) mutant vaccine strain.
Resumo:
We tested the use of multiplex real-time PCR for detection and quantification of Campylobacter jejuni and Campylobacter coli on broiler carcass neck skin samples collected during 2008 from slaughterhouses in Switzerland. Results from an established TaqMan assay based on two different targets (hipO and ceuE for C. jejuni and C. coli, respectively) were corroborated with data from a newly developed assay based on a single-nucleotide polymorphism in the fusA gene, which allows differentiation between C. jejuni and C. coli. Both multiplex real-time PCRs were applied simultaneously for direct detection, differentiation, and quantification of Campylobacter from 351 neck skin samples and compared with culture methods. There was good correlation in detection and enumeration between real-time PCR results and quantitative culture, with real-time PCR being more sensitive. Overall, 251 (71.5%) of the samples were PCR positive for Campylobacter, with 211 (60.1%) in the hipO-ceuE assays, 244 (69.5%) in the fusA assay, and 204 (58.1%) of them being positive in both PCR assays. Thus, the fusA assay was similarly sensitive to the enrichment culture (72.4% positive); however, it is faster and allows for quantification. In addition, real-time PCR allowed for species differentiation; roughly 60% of positive samples contained C. jejuni, less than 10% C. coli, and more than 30% contained both species. Real-time PCR proved to be a suitable method for direct detection, quantification, and differentiation of Campylobacter from carcasses, and could permit time-efficient surveillance of these zoonotic agents.
Resumo:
A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.
Resumo:
Identification of the subarachnoid space has traditionally been achieved by either a blind landmark-guided approach or using prepuncture ultrasound assistance. To assess the feasibility of performing spinal anaesthesia under real-time ultrasound guidance in routine clinical practice we conducted a single center prospective observational study among patients undergoing lower limb orthopaedic surgery. A spinal needle was inserted unassisted within the ultrasound transducer imaging plane using a paramedian approach (i.e., the operator held the transducer in one hand and the spinal needle in the other). The primary outcome measure was the success rate of CSF acquisition under real-time ultrasound guidance with CSF being located in 97 out of 100 consecutive patients within median three needle passes (IQR 1-6). CSF was not acquired in three patients. Subsequent attempts combining landmark palpation and pre-puncture ultrasound scanning resulted in successful spinal anaesthesia in two of these patients with the third patient requiring general anaesthesia. Median time from spinal needle insertion until intrathecal injection completion was 1.2 minutes (IQR 0.83-4.1) demonstrating the feasibility of this technique in routine clinical practice.
Resumo:
The aims of this prospective observational study were to assess the incidence of intraconal spread during peribulbar (extraconal) anesthesia by real-time ultrasound imaging of the retro-orbital compartment and to determine whether a complete sensory and motor block (with akinesia) of the eye is directly related to the intraconal spread.
Resumo:
Two alpacas from a herd in southwest Switzerland died for unknown reasons. Necropsy revealed chronic weight loss and pale mucous membranes. Infection with hemotropic mycoplasmas was suspected and subsequently confirmed by molecular methods. In order to investigate the epidemiological situation in this herd, a real-time TaqMan((R)) qPCR assay for the specific detection and quantification of hemoplasma infection in South American camelids was developed. This assay was based on the 16S rRNA gene and amplified 'Candidatus Mycoplasma haemolamae' DNA, but not DNA from other hemoplasmas or non-hemotropic mycoplasma species. The lower detection limit was one copy/PCR, and the amplification efficiency was 97.4%. In 11 out of 24 clinically healthy herd mates of the two infected alpacas, 'Candidatus M. haemolamae' infection was confirmed. No correlation was found between bacterial load and clinical signs or anemia. The assay described herein enables to detect and quantify 'Candidatus M. haemolamae' and may be used in future studies to investigate the prevalence, pathogenesis and treatment follow-up of hemoplasma infections in South American camelids.
Resumo:
Here we determined the analytical sensitivities of broad-range real-time PCR-based assays employing one of three different genomic DNA extraction protocols in combination with one of three different primer pairs targeting the 16S rRNA gene to detect a panel of 22 bacterial species. DNA extraction protocol III, using lysozyme, lysostaphin, and proteinase K, followed by PCR with the primer pair Bak11W/Bak2, giving amplicons of 796 bp in length, showed the best overall sensitivity, detecting DNA of 82% of the strains investigated at concentrations of < or =10(2) CFU in water per reaction. DNA extraction protocols I and II, using less enzyme treatment, combined with other primer pairs giving shorter amplicons of 466 bp and 342 or 346 bp, respectively, were slightly more sensitive for the detection of gram-negative but less sensitive for the detection of gram-positive bacteria. The obstacle of detecting background DNA in blood samples spiked with bacteria was circumvented by introducing a broad-range hybridization probe, and this preserved the minimal detection limits observed in samples devoid of blood. Finally, sequencing of the amplicons generated using the primer pair Bak11W/Bak2 allowed species identification of the detected bacterial DNA. Thus, broad-spectrum PCR targeting the 16S rRNA gene in the quantitative real-time format can achieve an analytical sensitivity of 1 to 10 CFU per reaction in water, avoid detection of background DNA with the introduction of a broad-range probe, and generate amplicons that allow species identification of the detected bacterial DNA by sequencing. These prerequisites are important for its application to blood-containing patient samples.