29 resultados para precipitation variability
Resumo:
The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780–1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ < 250 nm, (ii) irradiance at wavelengths λ > 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere–ocean chemistry–climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2–3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ < 250 nm and in energetic particle spectra have only an insignificant impact on the climate during the Dalton Minimum. This downscales the importance of top–down processes (stemming from changes at λ < 250 nm) relative to bottom–up processes (from λ > 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC of the upper ocean by up to 1.5%. In the simulation with all forcings, the OHC of the uppermost levels recovers after 8–15 years after volcanic eruption, while the solar signal and the different volcanic eruptions dominate the OHC changes in the deeper ocean and prevent its recovery during the DM. Finally, the simulations suggest that the volcanic eruptions during the DM had a significant impact on the precipitation patterns caused by a widening of the Hadley cell and a shift in the intertropical convergence zone.
Resumo:
This study presents the first consolidation of palaeoclimate proxy records from multiple archives to develop statistical rainfall reconstructions for southern Africa covering the last two centuries. State-of-the-art ensemble reconstructions reveal multi-decadal rainfall variability in the summer and winter rainfall zones. A decrease in precipitation amount over time is identified in the summer rainfall zone. No significant change in precipitation amount occurred in the winter rainfall zone, but rainfall variability has increased over time. Generally synchronous rainfall fluctuations between the two zones are identified on decadal scales, with common wet (dry) periods reconstructed around 1890 (1930). A strong relationship between seasonal rainfall and sea surface temperatures (SSTs) in the surrounding oceans is confirmed. Coherence among decadal-scale fluctuations of southern African rainfall, regional SST, SSTs in the Pacific Ocean and rainfall in south-eastern Australia suggest SST-rainfall teleconnections across the southern hemisphere. Temporal breakdowns of the SST-rainfall relationship in the southern African regions and the connection between the two rainfall zones are observed, for example during the 1950s. Our results confirm the complex interplay between large-scale teleconnections, regional SSTs and local effects in modulating multi-decadal southern African rainfall variability over long timescales.
Resumo:
Water stable isotope ratios and net snow accumulation in ice cores are commonly interpreted as temperature or precipitation proxies. However, only in a few cases has a direct calibration with instrumental data been attempted. In this study we took advantage of the dense network of observations in the European Alpine region to rigorously test the relationship of the annual and seasonal resolved proxy data from two highly resolved ice cores with local temperature and precipitation. We focused on the time period 1961–2001 with the highest amount and quality of meteorological data and the minimal uncertainty in ice core dating (±1 year). The two ice cores were retrieved from the Fiescherhorn glacier (northern Alps, 3900 m a.s.l.), and Grenzgletscher (southern Alps, 4200 m a.s.l.). A parallel core from the Fiescherhorn glacier allowed assessing the reproducibility of the ice core proxy data. Due to the orographic barrier, the two flanks of the Alpine chain are affected by distinct patterns of precipitation. The different location of the two glaciers therefore offers a unique opportunity to test whether such a specific setting is reflected in the proxy data. On a seasonal scale a high fraction of δ18O variability was explained by the seasonal cycle of temperature (~60% for the ice cores, ~70% for the nearby stations of the Global Network of Isotopes in Precipitation – GNIP). When the seasonality is removed, the correlations decrease for all sites, indicating that factors other than temperature such as changing moisture sources and/or precipitation regimes affect the isotopic signal on this timescale. Post-depositional phenomena may additionally modify the ice core data. On an annual scale, the δ18O/temperature relationship was significant at the Fiescherhorn, whereas for Grenzgletscher this was the case only when weighting the temperature with precipitation. In both cases the fraction of interannual temperature variability explained was ~20%, comparable to the values obtained from the GNIP stations data. Consistently with previous studies, we found an altitude effect for the δ18O of −0.17‰/100 m for an extended elevation range combining data of the two ice core sites and four GNIP stations. Significant correlations between net accumulation and precipitation were observed for Grenzgletscher during the entire period of investigation, whereas for Fiescherhorn this was the case only for the less recent period (1961–1977). Local phenomena, probably related to wind, seem to partly disturb the Fiescherhorn accumulation record. Spatial correlation analysis shows the two glaciers to be influenced by different precipitation regimes, with the Grenzgletscher reflecting the characteristic precipitation regime south of the Alps and the Fiescherhorn accumulation showing a pattern more closely linked to northern Alpine stations.
Resumo:
Decadal and longer timescale variability in the winter North Atlantic Oscillation (NAO) has considerable impact on regional climate, yet it remains unclear what fraction of this variability is potentially predictable. This study takes a new approach to this question by demonstrating clear physical differences between NAO variability on interannual-decadal (<30 year) and multidecadal (>30 year) timescales. It is shown that on the shorter timescale the NAO is dominated by variations in the latitude of the North Atlantic jet and storm track, whereas on the longer timescale it represents changes in their strength instead. NAO variability on the two timescales is associated with different dynamical behaviour in terms of eddy-mean flow interaction, Rossby wave breaking and blocking. The two timescales also exhibit different regional impacts on temperature and precipitation and different relationships to sea surface temperatures. These results are derived from linear regression analysis of the Twentieth Century and NCEP-NCAR reanalyses and of a high-resolution HiGEM General Circulation Model control simulation, with additional analysis of a long sea level pressure reconstruction. Evidence is presented for an influence of the ocean circulation on the longer timescale variability of the NAO, which is particularly clear in the model data. As well as providing new evidence of potential predictability, these findings are shown to have implications for the reconstruction and interpretation of long climate records.
Resumo:
This study aims at assessing the skill of several climate field reconstruction techniques (CFR) to reconstruct past precipitation over continental Europe and the Mediterranean at seasonal time scales over the last two millennia from proxy records. A number of pseudoproxy experiments are performed within the virtual reality ofa regional paleoclimate simulation at 45 km resolution to analyse different aspects of reconstruction skill. Canonical Correlation Analysis (CCA), two versions of an Analog Method (AM) and Bayesian hierarchical modeling (BHM) are applied to reconstruct precipitation from a synthetic network of pseudoproxies that are contaminated with various types of noise. The skill of the derived reconstructions is assessed through comparison with precipitation simulated by the regional climate model. Unlike BHM, CCA systematically underestimates the variance. The AM can be adjusted to overcome this shortcoming, presenting an intermediate behaviour between the two aforementioned techniques. However, a trade-off between reconstruction-target correlations and reconstructed variance is the drawback of all CFR techniques. CCA (BHM) presents the largest (lowest) skill in preserving the temporal evolution, whereas the AM can be tuned to reproduce better correlation at the expense of losing variance. While BHM has been shown to perform well for temperatures, it relies heavily on prescribed spatial correlation lengths. While this assumption is valid for temperature, it is hardly warranted for precipitation. In general, none of the methods outperforms the other. All experiments agree that a dense and regularly distributed proxy network is required to reconstruct precipitation accurately, reflecting its high spatial and temporal variability. This is especially true in summer, when a specifically short de-correlation distance from the proxy location is caused by localised summertime convective precipitation events.
Resumo:
The growth rate of atmospheric carbondioxide(CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO 2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.
Resumo:
Unraveling climatic effects on growth of oak - Europe’s most ecologically and economically important forest species - has been the subject of many recent studies; however, more insight based on field data is necessary to better understand the relationship between climate and tree growth and to adapt forest management strategies to future climate change. In this report, we explore the influence of temperature, precipitation and drought variability on the productivity and vitality of oak stands in the Czech Highlands. We collected 180 cores from mature oaks (Quercus petraea) at four forest stands in the Czech Drahany Highlands. Standard dendromethods were used for sample preparation, ring width measurements, cross-dating, chronology development, and the assessment of growth-climate response patterns. Crown vitality was also evaluated, using the modified ICP Forests methodology. Late spring precipitation totals between May and June as well as the mean July temperature for the year of ring formation were found to be the most important factors for oak growth, whereas crown condition was significantly affected by spring and summer drought. This study is rep-resentative for similar bio-ecological habitats across Central Europe and can serve as a dendroclima-tological blueprint for earlier periods for which detailed meteorological information is missing .
Resumo:
The main goals of this study were to identifythe alpine torrent catchments that are sensitive to climatic changes and to assess the robustness of the methods for the elaboration of flood and debris flow hazard zone maps to specific effects of climate changes. In this study, a procedure for the identification and localization of torrent catchments in which the climate scenarios will modify the hazard situation was developed. In two case studies, the impacts of a potential increase of precipitation intensities to the delimited hazard zones were studied. The identification and localization of the torrent and river catchments, where unfavourable changes in the hazard situation occur, could eliminate speculative and unnecessary measures against the impacts of climate changes like a general enlargement of hazard zones or a general over dimensioning of protection structures for the whole territory. The results showed a high spatial variability of the sensitivity of catchments to climate changes. In sensitive catchments, the sediment management in alpine torrents will meet future challenges due to a higher rate for sediment removal from retention basins. The case studies showed a remarkable increase of the areas affected by floods and debris flow when considering possible future precipitation intensities in hazard mapping. But, the calculated increase in extent of future hazard zones lay within the uncertainty of the methods used today for the delimitation of the hazard zones. Thus, the consideration of the uncertainties laying in the methods for the elaboration of hazard zone maps in the torrent and river catchments sensitive to climate changes would provide a useful instrument for the consideration of potential future climate conditions. The study demonstrated that weak points in protection structures in future will become more important in risk management activities.
Resumo:
The fatality risk caused by avalanches on road networks can be analysed using a long-term approach, resulting in a mean value of risk, and with emphasis on short-term fluctuations due to the temporal variability of both, the hazard potential and the damage potential. In this study, the approach for analysing the long-term fatality risk has been adapted by modelling the highly variable short-term risk. The emphasis was on the temporal variability of the damage potential and the related risk peaks. For defined hazard scenarios resulting from classified amounts of snow accumulation, the fatality risk was calculated by modelling the hazard potential and observing the traffic volume. The avalanche occurrence probability was calculated using a statistical relationship between new snow height and observed avalanche releases. The number of persons at risk was determined from the recorded traffic density. The method resulted in a value for the fatality risk within the observed time frame for the studied road segment. The long-term fatality risk due to snow avalanches as well as the short-term fatality risk was compared to the average fatality risk due to traffic accidents. The application of the method had shown that the long-term avalanche risk is lower than the fatality risk due to traffic accidents. The analyses of short-term avalanche-induced fatality risk provided risk peaks that were 50 times higher than the statistical accident risk. Apart from situations with high hazard level and high traffic density, risk peaks result from both, a high hazard level combined with a low traffic density and a high traffic density combined with a low hazard level. This provided evidence for the importance of the temporal variability of the damage potential for risk simulations on road networks. The assumed dependence of the risk calculation on the sum of precipitation within three days is a simplified model. Thus, further research is needed for an improved determination of the diurnal avalanche probability. Nevertheless, the presented approach may contribute as a conceptual step towards a risk-based decision-making in risk management.
Resumo:
Cyclones, which develop over the western Mediterranean and move northeastward are a major source of extreme weather and known to be responsible for heavy precipitation over the northern side of the Alpine range and Central Europe. As the relevant processes triggering these so-called Vb events and their impact on extreme precipitation are not yet fully understood, this study focuses on gaining insight into the dynamics of past events. For this, a cyclone detection and tracking tool is applied to the ERA-Interim reanalysis (1979–2013) to identify prominent Vb situations. Precipitation in the ERA-Interim and the E-OBS data sets is used to evaluate case-to-case precipitation amounts and to assess consistency between the two data sets. Both data sets exhibit high variability in precipitation amounts among different Vb events. While only 23 % of all Vb events are associated with extreme precipitation, around 15 % of all extreme precipitation days (99 percentile) over the northern Alpine region and Central Europe are induced by Vb events, although Vb cyclones are rare events (2.3 per year). To obtain a better understanding of the variability within Vb events, the analysis of the 10 heaviest and lowest precipitation Vb events reveals noticeable differences in the state of the atmosphere. These differences are most pronounced in the geopotential height and potential vorticity field, indicating a much stronger cyclone for heavy precipitation events. The related differences in wind direction are responsible for the moisture transport around the Alps and the orographical lifting along the northern slopes of the Alps. These effects are the main reasons for a disastrous outcome of Vb events, and consequently are absent in the Vb events associated with low precipitation. Hence, our results point out that heavy precipitation related to Vb events is mainly related to large-scale dynamics rather than to thermodynamic processes.
Resumo:
Century-long observed gridded land precipitation datasets are a cornerstone of hydrometeorological research. But recent work has suggested that observed Northern Hemisphere midlatitude (NHML) land mean precipitation does not show evidence of an expected negative response to mid-twentieth-century aerosol forcing. Utilizing observed river discharges, the observed runoff is calculated and compared with observed land precipitation. The results show a near-zero twentieth-century trendinobserved NHML landmean runoff,in contrast to the significant positive trend in observed NHML land mean precipitation. However, precipitation and runoff share common interannual and decadal variability. An obvious split, or breakpoint, is found in the NHML land mean runoff–precipitation relationship in the 1930s. Using runoff simulated by six land surface models (LSMs), which are driven by the observed precipitation dataset, such breakpoints are absent. These findings support previous hypotheses that inhomogeneities exist in the early-twentieth-century NHML land mean precipitation record. Adjusting the observed precipitation record according to the observed runoff record largely accounts for the departure of the observed precipitation response from that predicted given the real-world aerosol forcing estimate, more than halving the discrepancy from about 6 to around 2 W m 22. Consideration of complementary observed runoff adds support to the suggestion that NHML-wide early-twentieth-century precipitation observations are unsuitable for climate change studies. The agreement between precipitation and runoff over Europe, however, is excellent, supporting the use of whole-twentieth-century observed precipitation datasets here.
Resumo:
We present a barium (Ba) isotope fractionation study of marine biogenic carbonates (aragonitic corals). The major aim is to provide first constraints on the Ba isotope fractionation between modern surface sea water and coral skele- ton. Mediterranean surface sea water was found to be enriched in the heavy Ba isotopes compared to previously reported values for marine open ocean authi- genic and terrestrial minerals. In aquarium experiments with a continuous sup- ply of Mediterranean surface water, the Ba isotopic composition of the bulk sample originating from cultured, aragonitic scleractinian corals (d137/134Ba between +0.16 +/- 0.12permil and +0.41 +/-0.12permil) were isotopically identical or lighter than that of the ambient Mediterranean surface sea water (d137/134Ba = +0.42 +/- 0.07permil, 2SD), which corresponds to an empirical maximum value of Ba isotope fractionation of D137/134Bacoral-seawater = -0.26 +/- 0.14permil at 25°C. This maximum Ba isotope fractionation is close and identical in direction to previous results from inorganic precipitation experiments with aragonite- structured pure BaCO3 (witherite). The variability in measured Ba concentrations of the cultured corals is at odds with a uniform distribution coefficient, DBa/Ca, thus indicating stronger vital effects on isotope than element discrimination. This observation supports the hypothesis that the Ba isotopic compositions of these corals do not result from simple equilibrium between the skeleton and the bulk sea water. Complementary coral samples from natural settings (tropical shallow-water corals from the Bahamas and Florida and cold- water corals from the Norwegian continental shelf) show an even wider range in d137/134Ba values (+0.14 +/- 0.08permil and +0.77 +/- 0.11permil), most probably due to additional spatial and/or temporal sea water heterogeneity, as indicated by recent publications.
Resumo:
Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old and host more than 300 endemic species. As a target of the International Continental scientific Drilling Program (ICDP), a successful deep drilling campaign was carried out within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project in 2013. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site sediment succession from the central part of the lake. According to an age model, which is based on 11 tephra layers (first-order tie points) and on tuning of bio-geochemical proxy data to orbital parameters (second-order tie points), the analyzed sediment sequence covers the last 637 kyr. The DEEP site sediment succession consists of hemipelagic sediments, which are interspersed by several tephra layers and infrequent, thin (< 5 cm) mass wasting deposits. The hemipelagic sediments can be classified into three different lithotypes. Lithotype 1 and 2 deposits comprise calcareous and slightly calcareous silty clay and are predominantly attributed to interglacial periods with high primary productivity in the lake during summer and reduced mixing during winter. The data suggest that high ion and nutrient concentrations in the lake water promoted calcite precipitation and diatom growth in the epilimnion during MIS15, 13, and 5. Following a strong primary productivity, highest interglacial temperatures can be reported for marine isotope stages (MIS) 11 and 5, whereas MIS15, 13, 9, and 7 were comparably cooler. Lithotype 3 deposits consist of clastic, silty clayey material and predominantly represent glacial periods with low primary productivity during summer and longer and intensified mixing during winter. The data imply that the most severe glacial conditions at Lake Ohrid persisted during MIS16, 12, 10, and 6, whereas somewhat warmer temperatures can be inferred for MIS14, 8, 4, and 2. Interglacial-like conditions occurred during parts of MIS14 and 8.
Resumo:
Land and water management in semi-arid regions requires detailed information on precipitation distribution, including extremes, and changes therein. Such information is often lacking. This paper describes statistics of mean and extreme precipitation in a unique data set from the Mount Kenya region, encompassing around 50 stations with at least 30 years of data. We describe the data set, including quality control procedures and statistical break detection. Trends in mean precipitation and extreme indices calculated from these data for individual rainy seasons are compared with corresponding trends in reanalysis products. From 1979 to 2011, mean precipitation decreased at 75% of the stations during the ‘long rains’ (March to May) and increased at 70% of the stations during the ‘short rains’ (October to December). Corresponding trends are found in the number of heavy precipitation days, and maximum of consecutive 5-day precipitation. Conversely, an increase in consecutive dry days within both main rainy seasons is found. However, trends are only statistically significant in very few cases. Reanalysis data sets agree with observations with respect to interannual variability, while correlations are considerably lower for monthly deviations (ratios) from the mean annual cycle. While some products well reproduce the rainfall climatology and some the spatial trend pattern, no product reproduces both.