34 resultados para poultry farming
Resumo:
Aim: We investigate the response of vegetation composition and plant diversity to increasing land clearance, burning and agriculture at the Mesolithic–Neolithic transition (c. 6400–5000 bc) when first farming was introduced. Location: The Valais, a dry alpine valley in Switzerland. Methods: We combine high-resolution pollen, microscopic charcoal and sedimentological data to reconstruct past vegetation, fire and land use. Pollen evenness, rarefaction-based and accumulation-based palynological richness analyses were used to reconstruct past trends in plant diversity. Results: Our results show that from c. 5500 cal. yr bc, slash-and-burn activities created a more open landscape for agriculture, at the expense of Pinus and Betula forests. Land clearance by slash-and-burn promoted diverse grassland ecosystems, while on the long term it reduced woodland and forest diversity, affecting important tree species such as Ulmus and Tilia. Main conclusions: Understanding the resilience of Alpine ecosystems to past disturbance variability is relevant for future nature conservation plans. Our study suggests that forecasted land abandonment in the Alps will lead to pre-Neolithic conditions, with significant biodiversity losses in abandoned grassland ecosystems. Thus, management measures for biodiversity, such as ecological compensation areas, are needed in agricultural landscapes with a millennial history of human impact, such as the non-boreal European lowlands. Our study supports the hypothesis that species coexistence is maximized at an intermediate level of disturbances. For instance, species richness decreased when fire exceeded the quasi-natural variability observed during the Mesolithic times. Under a more natural disturbance regime, rather closed Pinus sylvestris and mixed oak forests would prevail.
Resumo:
Six previously published polymerase chain reaction (PCR) assays each targeting different genes were used to speciate 116 isolates previously identified as Campylobacter jejuni using routine microbiological techniques. Of the 116 isolates, 84 were of poultry origin and 32 of human origin. The six PCR assays confirmed the species identities of 31 of 32 (97%) human isolates and 56 of 84 (67%) poultry isolates as C. jejuni. Twenty eight of 84 (33%) poultry isolates were identified as Campylobacter coli and the remaining human isolate was tentatively identified as Campylobacter upsaliensis based on the degree of similarity of 16S rRNA gene sequences. Four of six published PCR assays showed 100% concordance in their ability to speciate 113 of the 116 (97.4%) isolates; two assays failed to generate a PCR product with four to 10 isolates. A C. coli-specific PCR identified all 28 hippuricase gene (hipO)-negative poultry isolates as C. coli although three isolates confirmed to be C. jejuni by the remaining five assays were also positive in this assay. A PCR-restriction fragment length polymorphism assay based on the 16S rRNA gene was developed, which contrary to the results of the six PCR-based assays, identified 28 of 29 hipO-negative isolates as C. jejuni. DNA sequence analysis of 16S rRNA genes from four hipO-negative poultry isolates showed they were almost identical to the C. jejuni type strain 16S rRNA sequences ATCC43431 and ATCC33560 indicating that assays reliant on 16S rRNA sequence may not be suitable for the differentiation of these two species.
Resumo:
BACKGROUND Evidence exists that a farming environment in childhood may provide protection against atopic respiratory disease. In the GABRIEL project based in Poland and Alpine regions of Germany, Austria and Switzerland, we aimed to assess whether a farming environment in childhood is protective against allergic diseases in Poland and whether specific exposures explain any protective effect. METHODS In rural Poland, 23 331 families of schoolchildren completed a questionnaire enquiring into farming practices and allergic diseases (Phase I). A subsample (n = 2586) participated in Phase II involving a more detailed questionnaire on specific farm exposures with objective measures of atopy. RESULTS Farming differed between Poland and the Alpine centres; in the latter, cattle farming was prevalent, whereas in Poland 18% of village farms kept ≥1 cow and 34% kept ≥1 pig. Polish children in villages had lower prevalences of asthma and hay fever than children from towns, and in the Phase II population, farm children had a reduced risk of atopy measured by IgE (aOR = 0.72, 95% CI 0.57, 0.91) and skin prick test (aOR = 0.65, 95% CI 0.50, 0.86). Early-life contact with grain was inversely related to the risk of atopy measured by IgE (aOR = 0.66, 95% CI 0.47, 0.92) and appeared to explain part of the farming effect. CONCLUSION While farming in Poland differed from that in the Alpine areas as did the exposure-response associations, we found in communities engaged in small-scale, mixed farming, there was a protective farming effect against objective measures of atopy potentially related to contact with grain or associated farm activities.
Resumo:
Mixtures of Rare Earth Elements (REE) have been used as animal growth-promoters on a large scale in China during the last 20 years. Numerous studies carried out in China claim it produces quite sensational growth-promoting effects in all categories of farm animals. To explore the question of whether REE's might prove suitable as a growth-promoter under western keeping conditions, feeding experiments were performed on pigs and poultry. The animals received a typical diet, supplemented with REE salts in concentrations between 75 and 300 mg/kg feed. Weight-gain, feed-intake, feed-conversion and (where applicable) laying parameters were observed. It was shown that in pigs receiving feed supplemented with REEs, an increase in daily weight gain of up to 19% and an improvement in feed-conversion of up to 11% can be achieved, whereas, for poultry, no positive effects on growth or productivity of the animals could be observed. Testing of important organs via Neutron Activating Analysis (NAA) showed a minute accumulation of REE, principally in liver and bones. Analysis of the poultry gut-flora, using selective media, showed that the main microorganism populations of the alimentary canal were unaffected by feed-supplementation with REE.
Resumo:
The field of animal syndromic surveillance (SyS) is growing, with many systems being developed worldwide. Now is an appropriate time to share ideas and lessons learned from early SyS design and implementation. Based on our practical experience in animal health SyS, with additions from the public health and animal health SyS literature, we put forward for discussion a 6-step approach to designing SyS systems for livestock and poultry. The first step is to formalise policy and surveillance goals which are considerate of stakeholder expectations and reflect priority issues (1). Next, it is important to find consensus on national priority diseases and identify current surveillance gaps. The geographic, demographic, and temporal coverage of the system must be carefully assessed (2). A minimum dataset for SyS that includes the essential data to achieve all surveillance objectives while minimizing the amount of data collected should be defined. One can then compile an inventory of the data sources available and evaluate each using the criteria developed (3). A list of syndromes should then be produced for all data sources. Cases can be classified into syndrome classes and the data can be converted into time series (4). Based on the characteristics of the syndrome-time series, the length of historic data available and the type of outbreaks the system must detect, different aberration detection algorithms can be tested (5). Finally, it is essential to develop a minimally acceptable response protocol for each statistical signal produced (6). Important outcomes of this pre-operational phase should be building of a national network of experts and collective action and evaluation plans. While some of the more applied steps (4 and 5) are currently receiving consideration, more emphasis should be put on earlier conceptual steps by decision makers and surveillance developers (1-3).
Resumo:
Between 2008 and 2012, commercial Swiss layer and layer breeder flocks experiencing problems in laying performance were sampled and tested for infection with Duck adenovirus A (DAdV-A; previously known as Egg drop syndrome 1976 virus). Organ samples from birds sent for necropsy as well as blood samples from living animals originating from the same flocks were analyzed. To detect virus-specific DNA, a newly developed quantitative real-time polymerase chain reaction method was applied, and the presence of antibodies against DAdV-A was tested using a commercially available enzyme-linked immunosorbent assay. In 5 out of 7 investigated flocks, viral DNA was detected in tissues. In addition, antibodies against DAdV-A were detected in all of the flocks.
Resumo:
A survey was conducted to generate holistic information on the production and utilization of local white lupin in two lupin growing districts, namely, Mecha and Sekela, representing mid and high altitude areas, respectively in North-western Ethiopia. During the survey, two types of participatory rural appraisal (PRA) techniques, namely, individual farmer interview (61 farmers from Mecha and 51 from Sekela) and group discussion (with 20 farmers from each district) were employed. There are significant differences (P<0.05) between the two study districts for the variables like total land holding, frequency of ploughing during lupin planting, days to maturity, lupin productivity, and number of days of soaking lupin in running water. However, there are no significant differences (P>0.05) between the two study districts for the variables like land allocated for lupin cultivation, lupin seed rate, lupin soaking at home, lupin consumption per family per week and proportion of lupin used for household consumption. The use of the crop as livestock feed is negligible due to its high alkaloid content. It is concluded that the local white lupin in Ethiopia is a valuable multipurpose crop which is being cultivated in the midst of very serious shortage of cropland. Its ability to maintain soil fertility and serve as a source of food in seasons of food scarcity makes it an important crop. However, its bitter taste due to its high alkaloid content remains to be a big challenge and any lupin improvement strategy has to focus on minimizing the alkaloid content of the crop.
Resumo:
Cocoa production in Alto Beni, Bolivia, is a major source of income and is severely affected by climate change impacts and other stress factors. Resilient farming systems are, thus, important for local families. This study compares indicators for social–ecological resilience in 30 organic and 22 nonorganic cocoa farms of Alto Beni. Organic farms had a higher tree and crop diversity, higher yields and incomes, more social connectedness, and participated in more courses on cocoa cultivation. Resilience was enhanced by local farmers’ organizations, providing organic certification and supporting diversified agroforestry with seedlings and extension, going beyond basic organic certification requirements.