27 resultados para polychlorinated biphenyl
Resumo:
In previous work, Alpine glaciers have been identified as a secondary source of persistent organic pollutants (POPs). However, detailed understanding of the processes organic chemicals undergo in a glacial system was missing. Here, we present results from a chemical fate model describing deposition and incorporation of polychlorinated biphenyls (PCBs) into an Alpine glacier (Fiescherhorn, Switzerland) and an Arctic glacier (Lomonosovfonna, Norway). To understand PCB fate and dynamics, we investigate the interaction of deposition, sorption to ice and particles in the atmosphere and within the glacier, revolatilization, diffusion and degradation, and discuss the effects of these processes on the fate of individual PCB congeners. The model is able to reproduce measured absolute concentrations in the two glaciers for most PCB congeners. While the model generally predicts concentration profiles peaking in the 1970s, in the measurements, this behavior can only be seen for higher-chlorinated PCB congeners on Fiescherhorn glacier. We suspect seasonal melt processes are disturbing the concentration profiles of the lower-chlorinated PCB congeners. While a lower-chlorinated PCB congener is mainly deposited by dry deposition and almost completely revolatilized after deposition, a higher-chlorinated PCB congener is predominantly transferred to the glacier surface by wet deposition and then is incorporated into the glacier ice. The incorporated amounts of PCBs are higher on the Alpine glacier than on the Arctic glacier due to the higher precipitation rate and aerosol particle concentration on the former. Future studies should include the effects of seasonal melt processes, calculate the quantities of PCBs incorporated into the entire glacier surface, and estimate the quantity of chemicals released from glaciers to determine the importance of glaciers as a secondary source of organic chemicals to remote aquatic ecosystems.
Polychlorinated Biphenyls in a Temperate Alpine Glacier: 2. Model Results of Chemical Fate Processes
Resumo:
We present a combined experimental and theoretical study of the electronic transport through single-molecule junctions based on nitrile-terminated biphenyl derivatives. Using a scanning tunneling microscope-based break-junction technique, we show that the nitrile-terminated compounds give rise to well-defined peaks in the conductance histograms resulting from the high selectivity of the N-Au binding. Ab initio calculations have revealed that the transport takes place through the tail of the LUMO. Furthermore, we have found both theoretically and experimentally that the conductance of the molecular junctions is roughly proportional to the square of the cosine of the torsion angle between the two benzene rings of the biphenyl core, which demonstrates the robustness of this structure-conductance relationship.
Resumo:
Since 2000, a surprisingly high number of macroscopical gonad alterations has been reported in whitefish (Coregonus spp.) from Lake Thun, Switzerland. This unique phenomenon is still unexplained and has received much public attention. As one possible trigger for these effects, the presence of persistent, bioaccumulative and toxic compounds acting as endocrine disruptors in the lake has been discussed. In this study, concentrations of selected persistent organic pollutants were examined in two morphs of whitefish from Lake Thun and their link to the observed abnormalities was investigated. Analyzed compound classes included polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated naphthalenes, polybrominated diphenyl ethers and hexabromocyclododecanes. The target substances were identified in all samples and concentrations of the analyzed compounds were highly correlated among each other. These correlations show that the analyzed substances have the same distribution pattern throughout the lake and that uptake, accumulation and elimination processes are similar. Significant differences in contaminant levels within the samples existed between the two analyzed morphs of whitefish, most likely due to different age, food patterns and growth rate. No difference in contaminant levels was observed between fish with abnormal gonads and fish with normal gonads, suggesting no causal link between the investigated lipophilic organohalogen compounds present in fish and the observed gonad abnormalities in whitefish from Lake Thun. A comparison to existing data shows that concentrations in Lake Thun whitefish are at the lower bound of contaminant levels in whitefish from Swiss lakes or from European waters.
Resumo:
A new series of cationic dinuclear arene ruthenium complexes bridged by three thiophenolato ligands, [(η6-arene)2Ru2(μ2-SR)3]+ with arene = indane, R = met: 1 (met = 4-methylphenyl); R = mco: 4 (mco = 4-methylcoumarin-7-yl); arene = biphenyl, R = met: 2; R = mco: 5; arene = 1,2,3,4-tetrahydronaphthalene, R = met: 3; R = mco: 6, have been prepared from the reaction of the neutral precursor [(η6-arene)Ru(μ2-Cl)Cl]2 and the corresponding thiophenol RSH. All cationic complexes have been isolated as chloride salts and fully characterized by spectroscopic and analytical methods. The molecular structure of 1, solved by X-ray structure analysis of a single crystal of the chloride salt, shows the two ruthenium atoms adopting a pseudo-octahedral geometry without metal–metal bond in accordance with the noble gas rule. All complexes are stable in H2O at 37 °C, but only 1 remains soluble in a 100 mM aqueous NaCl solution, while significant percentages (30–60 %) of 2–6 precipitate as chloride salts under these conditions. The 4-methylphenylthiolato complexes (R = met) are highly cytotoxic towards human ovarian cancer cells, the IC50 values being in the sub-micromolar range, while the 4-methylcoumarin-7-yl thiolato complexes (R = mco) are only slightly cytotoxic. Complexes 1 and 3 show the highest in vitro anticancer activity with IC50 values inferior to 0.06 μM for the A2780 cell line. The results demonstrate that the arene ligand is an important parameter that should be more systematically evaluated when designing new half-sandwich organometallic complexes.
Resumo:
BACKGROUND Magnolia bark preparations from Magnolia officinalis of Asian medicinal systems are known for their muscle relaxant effect and anticonvulsant activity. These CNS related effects are ascribed to the presence of the biphenyl-type neolignans honokiol and magnolol that exert a potentiating effect on GABAA receptors. 4-O-methylhonokiol isolated from seeds of the North-American M. grandiflora was compared to honokiol for its activity to potentiate GABAA receptors and its GABAA receptor subtype-specificity was established. METHODS Different recombinant GABAA receptors were functionally expressed in Xenopus oocytes and electrophysiological techniques were used determine to their modulation by 4-O-methylhonokiol. RESULTS 3μM 4-O-methylhonokiol is shown here to potentiate responses of the α₁β₂γ₂ GABAA receptor about 20-fold stronger than the same concentration of honokiol. In the present study potentiation by 4-O-methylhonokiol is also detailed for 12 GABAA receptor subtypes to assess GABAA receptor subunits that are responsible for the potentiating effect. CONCLUSION The much higher potentiation of GABAA receptors at identical concentrations of 4-O-methylhonokiol as compared to honokiol parallels previous observations made in other systems of potentiated pharmacological activity of 4-O-methylhonokiol over honokiol. GENERAL SIGNIFICANCE The results point to the use of 4-O-methylhonokiol as a lead for GABAA receptor potentiation and corroborate the use of M. grandiflora seeds against convulsions in Mexican folk medicine.
Resumo:
BACKGROUND AND PURPOSE 4'-O-methylhonokiol (MH) is a natural product showing anti-inflammatory, anti-osteoclastogenic, and neuroprotective effects. MH was reported to modulate cannabinoid CB2 receptors as an inverse agonist for cAMP production and an agonist for intracellular [Ca2+]. It was recently shown that MH inhibits cAMP formation via CB2 receptors. In this study, the exact modulation of MH on CB2 receptor activity was elucidated and its endocannabinoid substrate-specific inhibition (SSI) of cyclooxygenase-2 (COX-2) and CNS bioavailability are described for the first time. METHODS CB2 receptor modulation ([35S]GTPγS, cAMP, and β-arrestin) by MH was measured in hCB2-transfected CHO-K1 cells and native conditions (HL60 cells and mouse spleen). The COX-2 SSI was investigated in RAW264.7 cells and in Swiss albino mice by targeted metabolomics using LC-MS/MS. RESULTS MH is a CB2 receptor agonist and a potent COX-2 SSI. It induced partial agonism in both the [35S]GTPγS binding and β-arrestin recruitment assays while being a full agonist in the cAMP pathway. MH selectively inhibited PGE2 glycerol ester formation (over PGE2) in RAW264.7 cells and significantly increased the levels of 2-AG in mouse brain in a dose-dependent manner (3 to 20 mg kg(-1)) without affecting other metabolites. After 7 h from intraperitoneal (i.p.) injection, MH was quantified in significant amounts in the brain (corresponding to 200 to 300 nM). CONCLUSIONS LC-MS/MS quantification shows that MH is bioavailable to the brain and under condition of inflammation exerts significant indirect effects on 2-AG levels. The biphenyl scaffold might serve as valuable source of dual CB2 receptor modulators and COX-2 SSIs as demonstrated by additional MH analogs that show similar effects. The combination of CB2 agonism and COX-2 SSI offers a yet unexplored polypharmacology with expected synergistic effects in neuroinflammatory diseases, thus providing a rationale for the diverse neuroprotective effects reported for MH in animal models.
Resumo:
Sediments can act as long-term sinks for environmental pollutants. Within the past decades, dioxin-like compounds (DLCs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) have attracted significant attention in the scientific community. To investigate the time- and concentration-dependent uptake of DLCs and PAHs in rainbow trout (Oncorhynchus mykiss) and their associated toxicological effects, we conducted exposure experiments using suspensions of three field-collected sediments from the rivers Rhine and Elbe, which were chosen to represent different contamination levels. Five serial dilutions of contaminated sediments were tested; these originated from the Prossen and Zollelbe sampling sites (both in the river Elbe, Germany) and from Ehrenbreitstein (Rhine, Germany), with lower levels of contamination. Fish were exposed to suspensions of these dilutions under semi-static conditions for 90 days. Analysis of muscle tissue by high resolution gas chromatography and mass spectrometry and of bile liquid by high-performance liquid chromatography showed that particle-bound PCDD/Fs, PCBs and PAHs were readily bioavailable from re-suspended sediments. Uptake of these contaminants and the associated toxicological effects in fish were largely proportional to their sediment concentrations. The changes in the investigated biomarkers closely reflected the different sediment contamination levels: cytochrome P450 1A mRNA expression and 7-ethoxyresorufin-O-deethylase activity in fish livers responded immediately and with high sensitivity, while increased frequencies of micronuclei and other nuclear aberrations, as well as histopathological and gross pathological lesions, were strong indicators of the potential long-term effects of re-suspension events. Our study clearly demonstrates that sediment re-suspension can lead to accumulation of PCDD/Fs and PCBs in fish, resulting in potentially adverse toxicological effects. For a sound risk assessment within the implementation of the European Water Framework Directive and related legislation, we propose a strong emphasis on sediment-bound contaminants in the context of integrated river basin management plans.
Resumo:
Polychlorinated naphthalenes are environmentally relevant compounds that are measured in biota at concentrations in the μg/kg lipid range. Despite their widespread occurrence, literature data on the accumulation and effects of these compounds in aquatic ecosystems are sparsely available. The goal of this study was to gain insights into the biomagnification and effects of 1,2,3,5,7-pentachloronaphthalene (PeCN52) in an experimental food chain consisting of benthic worms and juvenile rainbow trout. Worms were contaminated with PeCN52 by passive dosing from polydimethylsiloxane silicone. The contaminated worms were then used to feed the juvenile rainbow trout at 0.12, 0.25 or 0.50 μg/g fish wet weight/day, and the resulting internal whole-body concentrations of the individual fish were linked to biological responses. A possible involvement of the cellular detoxification system was explored by measuring PeCN52-induced expression of the phase I biotransformation enzyme gene cyp1a1 and the ABC transporter gene abcb1a. At the end of the 28-day study, biomagnification factors were similar for all dietary intake levels with values between 0.5 and 0.7 kg lipid(fish)/kg lipid(worm). The average uptake efficiency of 60% indicated that a high amount of PeCN52 was transferred from the worms to the fish. Internal concentrations of up to 175 mg/kg fish lipid in the highest treatment level did not result in effects on survival, behavior, or growth of the juvenile trout, but were associated with the induction of phase I metabolism which was evident from the significant up-regulation of cyp1a1 expression in the liver. In contrast, no changes were seen in abcb1a transcript levels.