43 resultados para pn junction diodes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human HeLa cells expressing mouse connexin30 were used to study the electrical properties of gap junction channel substates. Experiments were performed on cell pairs using a dual voltage-clamp method. Single-channel currents revealed discrete levels attributable to a main state, a residual state, and five substates interposed, suggesting the operation of six subgates provided by the six connexins of a gap junction hemichannel. Substate conductances, gamma(j,substate), were unevenly distributed between the main-state and the residual-state conductance (gamma(j,main state) = 141 pS, gamma(j,residual state) = 21 pS). Activation of the first subgate reduced the channel conductance by approximately 30%, and activation of subsequent subgates resulted in conductance decrements of 10-15% each. Current transitions between the states were fast (<2 ms). Substate events were usually demarcated by transitions from and back to the main state; transitions among substates were rare. Hence, subgates are recruited simultaneously rather than sequentially. The incidence of substate events was larger at larger gradients of V(j). Frequency and duration of substate events increased with increasing number of synchronously activated subgates. Our mathematical model, which describes the operation of gap junction channels, was expanded to include channel substates. Based on the established V(j)-sensitivity of gamma(j,main state) and gamma(j,residual state), the simulation yielded unique functions gamma(j,substate) = f(V(j)) for each substate. Hence, the spacing of subconductance levels between the channel main state and residual state were uneven and characteristic for each V(j).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human HeLa cells transfected with mouse connexin45 were used to explore the experimental conditions suitable to measure currents carried by gap junction hemichannels. Experiments were performed with a voltage-clamp technique and whole-cell recording. Lowering [Ca(2+)](o) from 2 mM to 20 nM evoked an extra current, I (m), putatively carried by Cx45 hemichannels. However, the variability of I (m) (size, voltage sensitivity, kinetics) suggested the involvement of other channels. The finding that growth medium in the incubator increased the osmolarity with time implied that volume-regulated anion channels (VRAC) may participate. This assumption was reinforced by the following observations. On the one hand, keeping [Ca(2+)](o) normal while the osmolarity of the extracellular solution was reduced from 310 to 290 mOsm yielded a current characteristic of VRAC; I (VRAC) activated/deactivated at negative/positive voltage, giving rise to the conductance functions g (VRAC,inst)=f(V (m)) (inst: instantaneous; V (m): membrane potential) and g (VRAC,ss)=f(V (m)) (ss: steady state). Moreover, it was reversibly inhibited by mibefradil, a Cl(-)channel blocker (binding constant K (d)=38 microM, Hill coefficient n=12), but not by the gap junction channel blocker 18alpha-glycyrrhetinic acid. On the other hand, minimizing the osmotic imbalance while [Ca(2+)](o) was reduced led to a current typical for Cx45 hemichannels; I (hc) activated/deactivated at positive/negative voltage. Furthermore, it was reversibly inhibited by 18alpha-glycyrrhetinic acid or palmitoleic acid, but not by mibefradil. Computations based on g (VRAC,ss)=f(V (m)) and g (hc,ss)=f(V (m)) indicated that the concomitant operation of both currents results in a bell-shaped conductance-voltage relationship. The functional implications of the data presented are discussed. Conceivably, VRAC and hemichannels are involved in a common signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Claudins are major components of tight junctions and contribute to the epithelial-barrier function by restricting free diffusion of solutes through the paracellular pathway. We have mapped a new locus for recessive renal magnesium loss on chromosome 1p34.2 and have identified mutations in CLDN19, a member of the claudin multigene family, in patients affected by hypomagnesemia, renal failure, and severe ocular abnormalities. CLDN19 encodes the tight-junction protein claudin-19, and we demonstrate high expression of CLDN19 in renal tubules and the retina. The identified mutations interfere severely with either cell-membrane trafficking or the assembly of the claudin-19 protein. The identification of CLDN19 mutations in patients with chronic renal failure and severe visual impairment supports the fundamental role of claudin-19 for normal renal tubular function and undisturbed organization and development of the retina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Little is known about the incidence and treatment of ureteropelvic junction (UPJ) obstruction of renal grafts. We report on three cases treated by endopyelotomy. PATIENTS AND METHODS: Graft function declined in three patients 98, 135, and 144 days after kidney transplantation. Acute rejection was excluded by renal biopsy. Ultrasonography revealed a dilated collecting system, and a percutaneous nephrostomy tube was placed. An antegrade nephrostogram showed UPJ obstruction. Percutaneous antegrade endopyelotomy was performed with the cold-knife technique, and the area was stented for 6 weeks using a 14F/8.2F Smith endopyelotomy stent. RESULTS: No intraoperative or postoperative complications occurred. The endopyelotomies were successful, and the creatinine clearances returned to normal. CONCLUSION: Antegrade endopyelotomy in patients with UPJ obstruction of a renal graft is feasible and effective. Normal kidney function was restored after correction of the obstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of gap junction channels on cardiac impulse propagation is complex. This review focuses on the differential expression of connexins in the heart and the biophysical properties of gap junction channels under normal and disease conditions. Structural determinants of impulse propagation have been gained from biochemical and immunocytochemical studies performed on tissue extracts and intact cardiac tissue. These have defined the distinctive connexin coexpression patterns and relative levels in different cardiac tissues. Functional determinants of impulse propagation have emerged from electrophysiological experiments carried out on cell pairs. The static properties (channel number and conductance) limit the current flow between adjacent cardiomyocytes and thus set the basic conduction velocity. The dynamic properties (voltage-sensitive gating and kinetics of channels) are responsible for a modulation of the conduction velocity during propagated action potentials. The effect is moderate and depends on the type of Cx and channel. For homomeric-homotypic channels, the influence is small to medium; for homomeric-heterotypic channels, it is medium to strong. Since no data are currently available on heteromeric channels, their influence on impulse propagation is speculative. The modulation by gap junction channels is most prominent in tissues at the boundaries between cardiac tissues such as sinoatrial node-atrial muscle, atrioventricular node-His bundle, His bundle-bundle branch and Purkinje fibers-ventricular muscle. The data predict facilitation of orthodromic propagation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asphericity of the femoral head-neck junction is one cause for femoroacetabular impingement of the hip. However, the asphericity often is underestimated on conventional radiographs. This study compares the presence of asphericity on conventional radiographs with its appearance on radial slices of magnetic resonance arthrography (MRA). We retrospectively reviewed 58 selected hips in 148 patients who underwent a surgical dislocation of the hip. To assess the circumference of the proximal femur, alpha angle and height of asphericity were measured in 14 positions using radial slices of MRA. The hips were assigned to one of four groups depending on the appearance of the head-neck junction on anteroposterior pelvic and lateral crosstable radiographs. Group I (n = 19) was circular on both planes, Group II (n = 19) was aspheric on the crosstable view, Group III (n = 4) was aspheric on the anteroposterior view, and Group IV (n = 13) was aspheric on both views. In all four groups, the highest alpha angle was found in the anterosuperior area of the head-neck junction. Even when conventional radiographs appeared normal, an increased alpha angle was present anterosuperiorly. Without the use of radial slices in MRA, the asphericity would be underestimated in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Using an in vitro triple cell co-culture model consisting of human epithelial cells (16HBE14o-), monocyte-derived macrophages and dendritic cells, it was recently demonstrated that macrophages and dendritic cells create a transepithelial network between the epithelial cells to capture antigens without disrupting the epithelial tightness. The expression of the different tight junction proteins in macrophages and dendritic cells, and the formation of tight junction-like structures with epithelial cells has been demonstrated. Immunofluorescent methods combined with laser scanning microscopy and quantitative real-time polymerase chain reaction were used to investigate if exposure to diesel exhaust particles (DEP) (0.5, 5, 50, 125 mug/ml), for 24 h, can modulate the expression of the tight junction mRNA/protein of occludin, in all three cell types. RESULTS: Only the highest dose of DEP (125 mug/ml) seemed to reduce the occludin mRNA in the cells of the defence system however not in epithelial cells, although the occludin arrangement in the latter cell type was disrupted. The transepithelial electrical resistance was reduced in epithelial cell mono-cultures but not in the triple cell co-cultures, following exposure to high DEP concentration. Cytotoxicity was not found, in either epithelial mono-cultures nor in triple cell co-cultures, after exposure to the different DEP concentrations. CONCLUSION: We concluded that high concentrations of DEP (125 mug/ml) can modulate the tight junction occludin mRNA in the cells of the defence system and that those cells play an important role maintaining the epithelial integrity following exposure to particulate antigens in lung cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A light-harvesting complex composed of a p-stacked multichromophoric array in a DNA three-way junction is described. The modular design allows for a ready exchange of non-covalently attached energy acceptors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a combined experimental and theoretical investigation of the length dependence and anchor group dependence of the electrical conductance of a series of oligoyne molecular wires in single-molecule junctions with gold contacts. Experimentally, we focus on the synthesis and properties of diaryloligoynes with n = 1, 2, and 4 triple bonds and the anchor dihydrobenzo[b]thiophene (BT). For comparison, we also explored the aurophilic anchor group cyano (CN), amino (NH2), thiol (SH), and 4-pyridyl (PY). Scanning tunneling microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques are employed to investigate single-molecule conductance characteristics. The BT moiety is superior as compared to traditional anchoring groups investigated so far. BT-terminated oligoynes display a 100% probability of junction formation and possess conductance values which are the highest of the oligoynes studied and, moreover, are higher than other conjugated molecular wires of similar length. Density functional theory (DFT)-based calculations are reported for oligoynes with n = 1−4 triple bonds. Complete conductance traces and conductance distributions are computed for each family of molecules. The sliding of the anchor groups leads to oscillations in both the electrical conductance and the binding energies of the studied molecular wires. In agreement with experimental results, BT-terminated oligoynes are predicted to have a high electrical conductance. The experimental attenuation constants βH range between 1.7 nm−1 (CN) and 3.2 nm−1 (SH) and show the following trend: βH(CN) < βH(NH2) < βH(BT) < βH(PY) ≈ βH(SH). DFT-based calculations yield lower values, which range between 0.4 nm−1 (CN) and 2.2 nm−1 (PY).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Employing a scanning tunneling microscopy based beak junction technique and mechanically controlled break junction experiments, we investigated tolane (diphenylacetylene)-type single molecular junctions having four different anchoring groups (SH, pyridyl (PY), NH2, and CN) at a solid/liquid interface. The combination of current–distance and current–voltage measurements and their quantitative statistical analysis revealed the following sequence for junction formation probability and stability: PY > SH > NH2 > CN. For all single molecular junctions investigated, we observed the evolution through multiple junction configurations, with a particularly well-defined binding geometry for PY. The comparison of density functional theory type model calculations and molecular dynamics simulations with the experimental results revealed structure and mechanistic details of the evolution of the different types of (single) molecular junctions upon stretching quantitatively.