35 resultados para phosphatidylinositol


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant human group II phospholipase A2 (sPLA2) added to human platelets in the low microg/ml range induced platelet activation, as demonstrated by measurement of platelet aggregation, thromboxane A2 generation and influx of intracellular free Ca2+ concentration and by detection of time-dependent tyrosine phosphorylation of platelet proteins. The presence of Ca2+ at low millimolar concentrations is a prerequisite for the activation of platelets by sPLA2. Mg2+ cannot replace Ca2+. Mg2+, given in addition to the necessary Ca2+, inhibits sPLA2-induced platelet activation. Pre-exposure to sPLA2 completely blocked the aggregating effect of a second dose of sPLA2. Albumin or indomethacin inhibited sPLA2-induced aggregation, similarly to the inhibition of arachidonic acid-induced aggregation. Platelets pre-treated with heparitinase or phosphatidylinositol-specific phospholipase C lost their ability to aggregate in response to sPLA2, although they still responded to other agonists. This suggests that a glycophosphatidylinositol-anchored platelet-membrane heparan sulphate proteoglycan is the binding site for sPLA2 on platelets. Previous reports have stated that sPLA2 is unable to activate platelets. The inhibitory effect of albumin and Mg2+, frequently used in aggregation studies, and the fact that isolated platelets lose their responsiveness to sPLA2 relatively quickly, may explain why the platelet-activating effects of sPLA2 have not been reported earlier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rat Walker 256 carcinosarcoma cells spontaneously develop front-tail polarity and migrate in the absence of added stimuli. Constitutive activation of phosphatidylinositol-3 kinase (PI 3-kinase), Rac, Rho and Rho kinase are essential for these processes. Ezrin and moesin are putative targets of these signaling pathways leading to spontaneous migration. To test this hypothesis, we used specific siRNA probes that resulted in a downregulation of ezrin and moesin by about 70% and in a similar reduction in the fraction of migrating cells. Spontaneous polarization however was not affected, indicating a more subtle role of ezrin and moesin in migration. We provide furthermore evidence that endogenous ezrin and moesin colocalize with F-actin at the contracted tail of polarized cells, similar to ectopically expressed green fluorescent protein-tagged ezrin. Our results suggest that myosin light chain and ezrin are markers of front and tail, respectively, even in the absence of morphological polarization. We further show that endogenous ezrin and moesin are phosphorylated and that activities of PI-3 kinase, Rho and Rac, but not of Rho-kinase, are required for this C-terminal phosphorylation. Activation of protein kinase C in contrast suppressed phosphorylation of ezrin and moesin. Inhibition of ezrin phosphorylation prevented its membrane association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin receptors are widely distributed in the kidney and affect multiple aspects of renal function. In the proximal tubule, insulin regulates volume and acid-base regulation through stimulation of the Na(+)/H(+) exchanger NHE3. This paper characterizes the signaling pathway by which insulin stimulates NHE3 in a cell culture model [opossum kidney (OK) cell]. Insulin has two distinct phases of action on NHE3. Chronic insulin (24 h) activates NHE3 through the classic phosphatidylinositol 3-kinase-serum- and glucocorticoid-dependent kinase 1 (PI3K-SGK1) pathway as insulin stimulates SGK1 phosphorylation and the insulin effect can be blocked by the PI3K inhibitor wortmannin or a dominant-negative SGK1. We showed that SGK1 transcript and protein are expressed in rat proximal tubule and OK cells. We previously showed that glucocorticoids augment the effect of insulin on NHE3 (Klisic J, Hu MC, Nief V, Reyes L, Fuster D, Moe OW, Ambuhl PM. Am J Physiol Renal Physiol 283: F532-F539, 2002). Part of this can be mediated via induction of SGK1 by glucocorticoids, and indeed the insulin effect on NHE3 can also be amplified by overexpression of SGK1. We next addressed the acute effect of insulin (1-2 h) on NHE3 by systematically examining the candidate signaling cascades and activation mechanisms of NHE3. We ruled out the PI3K-SGK1-Akt and TC10 pathways, increased surface NHE3, NHE3 phosphorylation, NHE3 association with calcineurin homologous protein 1 or megalin as mechanisms of acute activation of NHE3 by insulin. In summary, insulin stimulates NHE3 acutely via yet undefined pathways and mechanisms. The chronic effect of insulin is mediated by the classic PI3K-SGK1 route.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Pregnancy is associated with reduced disease activity in rheumatoid arthritis (RA) and frequently with disease exacerbation after delivery. This study was undertaken to generate a systematic overview of the molecular mechanisms related to disease remission and postpartum reactivation. METHODS: Transcriptomes of peripheral blood mononuclear cells (PBMCs) were generated from RA patients and healthy women by transcription profiling during the third trimester and 24 weeks after delivery. For functional interpretation, signatures of highly purified immune cells as well as Kyoto Encyclopedia of Genes and Genomes pathway annotations were used as a reference. RESULTS: Only minor differences in gene expression in PBMCs during pregnancy were found between RA patients and controls. In contrast, RA postpartum profiles presented the most dominant changes. Systematic comparison with expression signatures of monocytes, T cells, and B cells in healthy donors revealed reduced lymphocyte and elevated monocyte gene activity during pregnancy in patients with RA and in controls. Monocyte activity decreased after delivery in controls but persisted in RA patients. Furthermore, analysis of 32 immunologically relevant cellular pathways demonstrated a significant additional activation of genes related to adhesion, migration, defense of pathogens, and cell activation, including Notch, phosphatidylinositol, mTOR, Wnt, and MAPK signaling, in RA patients postpartum. CONCLUSION: Our findings indicate that innate immune functions play an important role in postpartum reactivation of arthritis. However, this may depend not only on the monocyte itself, but also on the recurrence of lymphocyte functions postpartum and thus on a critical interaction between both arms of the immune system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

11beta-Hydroxysteroid dehydrogenase (11beta-HSD) type 1 and type 2 catalyze the interconversion of inactive and active glucocorticoids. Impaired regulation of these enzymes has been associated with obesity, diabetes, hypertension, and cardiovascular disease. Previous studies in animals and humans suggested that dehydroepiandrosterone (DHEA) has antiglucocorticoid effects, but the underlying mechanisms are unknown. In this study, DHEA treatment markedly increased mRNA expression and activity of 11beta-HSD2 in a rat cortical collecting duct cell line and in kidneys of C57BL/6J mice and Sprague-Dawley rats. DHEA-treated rats tended to have reduced urinary corticosterone to 11-dehydrocorticosterone ratios. It was found that CCAAT/enhancer-binding protein-alpha (C/EBP-alpha) and C/EBP-beta regulated HSD11B2 transcription and that DHEA likely modulated the transcription of 11beta-HSD2 in a phosphatidylinositol-3 kinase/Akt-dependent manner by increasing C/EBP-beta mRNA and protein expression. Moreover, it is shown that C/EBP-alpha and C/EBP-beta differentially regulate the expression of 11beta-HSD1 and 11beta-HSD2. In conclusion, DHEA induces a shift from 11beta-HSD1 to 11beta-HSD2 expression, increasing conversion from active to inactive glucocorticoids. This provides a possible explanation for the antiglucocorticoid effects of DHEA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the immediate effect of thiazolidinediones on human skeletal muscle, differentiated human myotubes were acutely (1 day) and myoblasts chronically (during the differentiation process) treated with troglitazone (TGZ). Chronic TGZ treatment resulted in loss of the typical multinucleated phenotype. The increase of muscle markers typically observed during differentiation was suppressed, while adipocyte markers increased markedly. Chronic TGZ treatment increased insulin-stimulated phosphatidylinositol (PI) 3-kinase activity and membranous protein kinase B/Akt (PKB/Akt) Ser-473 phosphorylation more than 4-fold. Phosphorylation of p42/44 mitogen-activated protein kinase (42/44 MAPK/ERK) was unaltered. Basal glucose uptake as well as both basal and insulin-stimulated glycogen synthesis increased approximately 1.6- and approximately 2.5-fold after chronic TGZ treatment, respectively. A 2-fold stimulation of PI 3-kinase but no other significant TGZ effect was found after acute TGZ treatment. In conclusion, chronic TGZ treatment inhibited myogenic differentiation of that human muscle while inducing adipocyte-specific gene expression. The effects of chronic TGZ treatment on basal glucose transport may in part be secondary to this transdifferentiation. The enhancing effect on PI 3-kinase and PKB/Akt involved in both differentiation and glycogen synthesis appears to be pivotal in the cellular action of TGZ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate mechanisms by which angiotensin converting enzyme (ACE)-inhibition increases insulin sensitivity, spontaneously hypertensive (SH) rats were treated with or without ramipril (1 mg/kg per day) for 12 weeks. Insulin binding and protein levels of insulin receptor substrate-1 (IRS-1), p85-subunit of phosphatidylinositol 3'-kinase (p85) and Src homology 2 domain-containing phosphatase-2 (SHP2) were then determined in hindlimb muscle and liver. Additionally, protein tyrosine phosphatase (PTPase) activities towards immobilized phosphorylated insulin receptor or phosphorylated IRS-1 of membrane (MF) and cytosolic fractions (CF) of these tissues were measured. Ramipril treatment increased IRS-1-protein content in muscle by 31+/-9% (P<0.05). No effects were observed on IRS-1 content in liver or on insulin binding or protein expression of p85 or SHP2 in both tissues. Ramipril treatment also increased dephosphorylation of insulin receptor by muscle CF (22.0+/-1.0%/60 min compared to 16.8+/-1.5%/60 min; P<0.05), and of IRS-1 by liver MF (37.2+/-1.7%/7.5 min compared to 33.8+/-1.7%/7.5 min; P<0.05) and CF (36.8+/-1.0%/7.5 min compared to 33.2+/-1.0%/7.5 min; P<0.05). We conclude that the observed effects of ACE-inhibition by ramipril on the protein expression of IRS-1 and on PTPase activity might contribute to its effect on insulin sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of these studies was to investigate whether insulin resistance is primary to skeletal muscle. Myoblasts were isolated from muscle biopsies of 8 lean insulin-resistant and 8 carefully matched insulin-sensitive subjects (metabolic clearance rates as determined by euglycemic-hyperinsulinemic clamp: 5.8 +/- 0.5 vs. 12.3 +/- 1.7 ml x kg(-1) x min(-1), respectively; P < or = 0.05) and differentiated to myotubes. In these cells, insulin stimulation of glucose uptake, glycogen synthesis, insulin receptor (IR) kinase activity, and insulin receptor substrate 1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity were measured. Furthermore, insulin activation of protein kinase B (PKB) was compared with immunoblotting of serine residues at position 473. Basal glucose uptake (1.05 +/- 0.07 vs. 0.95 +/- 0.07 relative units, respectively; P = 0.49) and basal glycogen synthesis (1.02 +/- 0.11 vs. 0.98 +/- 0.11 relative units, respectively; P = 0.89) were not different in myotubes from insulin-resistant and insulin-sensitive subjects. Maximal insulin responsiveness of glucose uptake (1.35 +/- 0.03-fold vs. 1.41 +/- 0.05-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.43) and glycogen synthesis (2.00 +/- 0.13-fold vs. 2.10 +/- 0.16-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.66) were also not different. Insulin stimulation (1 nmol/l) of IR kinase and PI 3-kinase were maximal within 5 min (approximately 8- and 5-fold over basal, respectively), and insulin activation of PKB was maximal within 15 min (approximately 3.5-fold over basal). These time kinetics were not significantly different between groups. In summary, our data show that insulin action and signaling in cultured skeletal muscle cells from normoglycemic lean insulin-resistant subjects is not different from that in cells from insulin-sensitive subjects. This suggests an important role of environmental factors in the development of insulin resistance in skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serine residues of the human insulin receptor (HIR) may be phosphorylated and negatively regulate the insulin signal. We studied the impact of 16 serine residues in HIR by mutation to alanine and co-overexpression in human embryonic kidney (HEK) 293 cells together with the docking proteins insulin receptor substrate (IRS)-1, IRS-2, or (SHC) Src homologous and collagen-like. As a control, IRS-1 was also cotransfected with an HIR with a juxtamembrane deletion (HIR delta JM) and therefore not containing the domain required for interaction with IRS-1. Coexpression of HIR with IRS-1, IRS-2, and SHC strongly enhanced tyrosine phosphorylation of these proteins. A similar increase in tyrosine phosphorylation was observed in cells overexpressing IRS-1, IRS-2, or SHC together with all HIR mutants except HIR delta JM and a mutant carrying exchanges of serines 1177, 1178, and 1182 to alanine (HIR1177/78/82), although this mutant showed normal autophosphorylation. Analysis of total cell lysates with anti-phosphotyrosine antibodies showed that in addition to the overexpressed substrates, other cellular proteins displayed reduced levels of tyrosine phosphorylation in these cells. To study consequences for phosphatidylinositol 3-kinase (PI 3-kinase) activation, we established stable NIH3T3 fibroblast cell lines overexpressing wild-type HIR, HIR1177/78/82, and other HIR mutants as the control. Again, HIR1177/78/82 showed normal autophosphorylation but showed a clear decrease in tyrosine phosphorylation of endogenous IRS-1 and activation of PI 3-kinase. This decrease in kinase activity also occurred in an in vitro kinase assay towards recombinant IRS-1. Finally, we performed a separation of the phosphopeptides by high-performance liquid chromatography and could not detect any differences in the profiles of HIR and HIR1177/78/82. In conclusion, we have defined a region in HIR that is important for substrate phosphorylation but not autophosphorylation. Therefore, this mutant may provide new insights into the mechanism of kinase activation and substrate phosphorylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under inflammatory conditions, neutrophil apoptosis is delayed due to survival-factor exposure, a mechanism that prevents the resolution of inflammation. One important proinflammatory cytokine involved in the regulation of neutrophil survival/activation is granulocyte-macrophage colony-stimulating factor (GM-CSF). Although GM-CSF mediates antiapoptotic effects in neutrophils, it does not prevent apoptosis, and the survival effect is both time dependent and limited. Here, we identified the proapoptotic Bcl-2 family member Bim as an important lifespan limiting molecule in neutrophils, particularly under conditions of survival factor exposure. Strikingly, GM-CSF induced Bim expression in both human and mouse neutrophils that was blocked by pharmacological inhibition of phosphatidylinositol-3 kinase (PI3K). Increased Bim expression was also seen in human immature bone marrow neutrophils as well as in blood neutrophils from septic shock patients; both cell populations are known to be exposed to GM-CSF under in vivo conditions. The functional role of Bim was investigated using Bim-deficient mouse neutrophils in the presence and absence of the survival cytokines interleukin (IL)-3 and GM-CSF. Lack of Bim expression resulted in a much higher efficacy of the survival cytokines to block neutrophil apoptosis. Taken together, these data demonstrate a functional role for Bim in the regulation of neutrophil apoptosis and suggest that GM-CSF and other neutrophil hematopoietins initiate a proapoptotic counterregulation that involves upregulation of Bim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have shown previously that the raft-associated proteins flotillin-1 and -2 are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Other proteins such as the adhesion receptor PSGL-1, the actin-membrane linker proteins ezrin/radixin/moesin (ERM) and the signaling enzyme phosphatidylinositol-4-phosphate 5-kinase type Iγ90 (PIPKIγ90) also accumulate in the T-cell uropod. Using the in situ proximity ligation assay (PLA) we now have investigated putative close associations of these proteins in human freshly isolated T-cells before and after chemokine addition. The PLA allows in situ subcellular localization of close proximity of endogenous proteins at single-molecule resolution in fixed cells. It allows detection also of weaker and transient complexes that would not be revealed with co-immunoprecipitation approaches. We previously provided evidence for heterodimer formation of tagged flotillin-1 and -2 in T-cells before and after chemokine addition using fluorescence resonance energy transfer (FRET). We now confirm these findings using PLA for the endogenous flotillins in fixed human T-cells. Moreover, in agreement with the literature, our PLA findings confirm a close association of endogenous PSGL-1 and ERM proteins both in resting and chemokine-activated human T-cells. In addition, we provide novel evidence using the PLA for close associations of endogenous activated ERM proteins with PIPKIγ90 and of endogenous flotillins with PSGL-1 in human T-cells, before and after chemokine addition. Our findings suggest that preformed clusters of these proteins coalesce in the uropod upon cell stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the WD-repeat protein interacting with phosphoinositides (WIPI) family are phosphatidylinositol 3-phosphate (PI3P) effectors that are essential for the formation of autophagosomes. Autophagosomes, unique double-membraned organelles, are characteristic for autophagy, a bulk degradation mechanism with cytoprotective and homeostatic function. Both, WIPI-1 and WIPI-2 are aberrantly expressed in several solid tumors, linking these genes to carcinogenesis. We now found that the expression of WIPI-1 was significantly reduced in a large cohort of 98 primary acute myeloid leukemia (AML) patient samples (complex karyotypes; t(8;21); t(15,17); inv(16)). In contrast, the expression of WIPI-2 was only reduced in acute promyelocytic leukemia (APL), a distinct subtype of AML (t(15,17)). As AML cells are blocked in their differentiation, we tested if the expression levels of WIPI-1 and WIPI-2 increase during all-trans retinoic acid (ATRA)-induced neutrophil differentiation of APL. According to the higher WIPI-1 expression in granulocytes compared with immature blast cells, WIPI-1 but not WIPI-2 expression was significantly induced during neutrophil differentiation of NB4 APL cells. Interestingly, the induction of WIPI-1 expression was dependent on the transcription factor PU.1, a master regulator of myelopoiesis, supporting our notion that WIPI-1 expression is reduced in AML patients lacking proper PU-1 activity. Further, knocking down WIPI-1 in NB4 cells markedly attenuated the autophagic flux and significantly reduced neutrophil differentiation. This result was also achieved by knocking down WIPI-2, suggesting that both WIPI-1 and WIPI-2 are functionally required and not redundant in mediating the PI3P signal at the onset of autophagy in NB4 cells. In line with these data, downregulation of PI3KC3 (hVPS34), which generates PI3P upstream of WIPIs, also inhibited neutrophil differentiation. In conclusion, we demonstrate that both WIPI-1 and WIPI-2 are required for the PI3P-dependent autophagic activity during neutrophil differentiation, and that PU.1-dependent WIPI-1 expression is significantly repressed in primary AML patient samples and that the induction of autophagic flux is associated with neutrophil differentiation of APL cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagy is a lysosomal bulk degradation pathway for cytoplasmic cargo, such as long-lived proteins, lipids, and organelles. Induced upon nutrient starvation, autophagic degradation is accomplished by the concerted actions of autophagy-related (ATG) proteins. Here we demonstrate that two ATGs, human Atg2A and Atg14L, colocalize at cytoplasmic lipid droplets (LDs) and are functionally involved in controlling the number and size of LDs in human tumor cell lines. We show that Atg2A is targeted to cytoplasmic ADRP-positive LDs that migrate bidirectionally along microtubules. The LD localization of Atg2A was found to be independent of the autophagic status. Further, Atg2A colocalized with Atg14L under nutrient-rich conditions when autophagy was not induced. Upon nutrient starvation and dependent on phosphatidylinositol 3-phosphate [PtdIns(3)P] generation, both Atg2A and Atg14L were also specifically targeted to endoplasmic reticulum-associated early autophagosomal membranes, marked by the PtdIns(3)P effectors double-FYVE containing protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides 1 (WIPI-1), both of which function at the onset of autophagy. These data provide evidence for additional roles of Atg2A and Atg14L in the formation of early autophagosomal membranes and also in lipid metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND & AIMS Senescence prevents cellular transformation. We investigated whether vascular endothelial growth factor (VEGF) signaling via its receptor, VEGFR2, regulates senescence and proliferation of tumor cells in mice with colitis-associated cancer (CAC). METHODS CAC was induced in VEGFR2(ΔIEC) mice, which do not express VEGFR2 in the intestinal epithelium, and VEGFR2(fl/fl) mice (controls) by administration of azoxymethane followed by dextran sodium sulfate. Tumor development and inflammation were determined by endoscopy. Colorectal tissues were collected for immunoblot, immunohistochemical, and quantitative polymerase chain reaction analyses. Findings from mouse tissues were confirmed in human HCT116 colorectal cancer cells. We analyzed colorectal tumor samples from patients before and after treatment with bevacizumab. RESULTS After colitis induction, VEGFR2(ΔIEC) mice developed significantly fewer tumors than control mice. A greater number of intestinal tumor cells from VEGFR2(ΔIEC) mice were in senescence than tumor cells from control mice. We found VEGFR2 to activate phosphatidylinositol-4,5-bisphosphate-3-kinase and AKT, resulting in inactivation of p21 in HCT116 cells. Inhibitors of VEGFR2 and AKT induced senescence in HCT116 cells. Tumor cell senescence promoted an anti-tumor immune response by CD8(+) T cells in mice. Patients whose tumor samples showed an increase in the proportion of senescent cells after treatment with bevacizumab had longer progression-free survival than patients in which the proportion of senescent tumor cells did not change before and after treatment. CONCLUSIONS Inhibition of VEGFR2 signaling leads to senescence of human and mouse colorectal cancer cells. VEGFR2 interacts with phosphatidylinositol-4,5-bisphosphate-3-kinase and AKT to inactivate p21. Colorectal tumor senescence and p21 level correlate with patient survival during treatment with bevacizumab.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used multiple sets of simulations both at the atomistic and coarse-grained level of resolution to investigate interaction and binding of α-tochoperol transfer protein (α-TTP) to phosphatidylinositol phosphate lipids (PIPs). Our calculations indicate that enrichment of membranes with such lipids facilitate membrane anchoring. Atomistic models suggest that PIP can be incorporated into the binding cavity of α-TTP and therefore confirm that such protein can work as lipid exchanger between the endosome and the plasma membrane. Comparison of the atomistic models of the α-TTP-PIPs complex with membrane-bound α-TTP revealed different roles for the various basic residues composing the basic patch that is key for the protein/ligand interaction. Such residues are of critical importance as several point mutations at their position lead to severe forms of ataxia with vitamin E deficiency (AVED) phenotypes. Specifically, R221 is main residue responsible for the stabilization of the complex. R68 and R192 exchange strong interactions in the protein or in the membrane complex only, suggesting that the two residues alternate contact formation, thus facilitating lipid flipping from the membrane into the protein cavity during the lipid exchange process. Finally, R59 shows weaker interactions with PIPs anyway with a clear preference for specific phosphorylation positions, hinting a role in early membrane selectivity for the protein. Altogether, our simulations reveal significant aspects at the atomistic scale of interactions of α-TTP with the plasma membrane and with PIP, providing clarifications on the mechanism of intracellular vitamin E trafficking and helping establishing the role of key residue for the functionality of α-TTP.