20 resultados para organizing purposes
Resumo:
Collagen XII, largest member of the fibril-associated collagens with interrupted triple helix (FACIT) family, assembles from three identical α-chains encoded by the COL12A1 gene. The molecule consists of three threadlike N-terminal noncollagenous NC3 domains, joined by disulfide bonds and a short interrupted collagen triple helix toward the C-terminus. Splice variants differ considerably in size and properties: "small" collagen XIIB (220 kDa subunit) is similar to collagen XIV, whereas collagen XIIA (350 kDa) has a much larger NC3 domain carrying glycosaminoglycan chains. Collagen XII binds to collagen I-containing fibrils via its collagenous domain, whereas its large noncollagenous arms interact with other matrix proteins such as tenascin-X. In dense connective tissues and bone, collagen XII is thought to regulate organization and mechanical properties of collagen fibril bundles. Accordingly, recent findings show that collagen XII mutations cause Ehlers-Danlos/myopathy overlap syndrome associated with skeletal abnormalities and muscle weakness in mice and humans.
Resumo:
Directional migration requires robust front/back polarity. We find that fibroblasts treated with platelet-derived growth factor (PDGF) and prepolarized by plating on a fibronectin line substrate exhibit persistent migration for hours. This does not occur in the absence of PDGF or on uniformly coated fibronectin substrates. Persistent migration arises from establishment of two functional modules at cell front and back. At the front, formation of a zone containing podosome-like structures (PLS) dynamically correlates with low RhoA and myosin activity and absence of a contractile lamella. At the back, myosin contractility specifically controls tail retraction with minimal crosstalk to the front module. The PLS zone is maintained in a dynamic steady state that preserves size and position relative to the cell front, allowing for long-term coordination of front and back modules. We propose that front/back uncoupling achieved by the PLS zone is crucial for persistent migration in the absence of directional cues.
Resumo:
`Evolution of mylonitic microfabrics' (EMM) is an interactive Filemaker Pro 3.0 application that documents a series of see-through deformation experiments on polycrystalline norcamphor. The application comprises computer animations, graphics and text explanations designed to give students and researchers insight into the interaction and dynamic nature of small-scale, mylonitic processes like intracrystalline glide, dynamic recrystallization and strain localization (microshearing). EMM shows how mylonitic steady state is achieved at different strain rates and temperatures. First, rotational mechanisms like glide-induced vorticity, subgrain rotation recrystallization and rigid-body rotation bring grains' crystal lattices into orientations that are favorable for intracrystalline glide. In a second stage, selective elimination of grains whose lattices are poorly oriented for glide involves grain boundary migration. This strengthens the texture. Temperature and strain rate affect both the relative activity of different strain accommodation mechanisms and the rate of microfabric change. Steady-state microfabrics are characterized by stable texture, grain size and shape-preferred orientations of grains and domains. This involves the cyclical generation and elimination of dynamically recrystallized grains and microshear zones.