18 resultados para nosocomial
Resumo:
We describe two human immunodeficiency virus-negative patients who developed Pneumocystis carinii pneumonia (PCP) during immunosuppressive therapy for antineutrophil cytoplasmic autoantibody-positive vasculitis and review the literature regarding the pathogenesis and frequency of PCP. The recent application of DNA amplification techniques suggests that PCP developing in immunocompromised individuals does not necessarily result from reactivation of a dormant focus, but may arise as de novo infection after exposure to an exogenous source of P carinii. In addition, several reports about clusters of PCP cases raise concern about the risk of a nosocomial transmission of P carinii. Therefore, PCP should be added to the list of bronchopulmonary complications in patients with antineutrophil cytoplasmic autoantibody-positive vasculitis who are receiving long-term steroid therapy.
Resumo:
BACKGROUND Staphylococcus aureus has long been recognized as a major pathogen. Methicillin-resistant strains of S. aureus (MRSA) and methicillin-resistant strains of S. epidermidis (MRSE) are among the most prevalent multiresistant pathogens worldwide, frequently causing nosocomial and community-acquired infections. METHODS In the present pilot study, we tested a polymerase chain reaction (PCR) method to quickly differentiate Staphylococci and identify the mecA gene in a clinical setting. RESULTS Compared to the conventional microbiology testing the real-time PCR assay had a higher detection rate for both S. aureus and coagulase-negative Staphylococci (CoNS; 55 vs. 32 for S. aureus and 63 vs. 24 for CoNS). Hands-on time preparing DNA, carrying out the PCR, and evaluating results was less than 5 h. CONCLUSIONS The assay is largely automated, easy to adapt, and has been shown to be rapid and reliable. Fast detection and differentiation of S. aureus, CoNS, and the mecA gene by means of this real-time PCR protocol may help expedite therapeutic decision-making and enable earlier adequate antibiotic treatment.
Resumo:
UNLABELLED In a prospective multicentre study of bloodstream infection (BSI) from November 01, 2007 to July 31, 2010, seven paediatric cancer centres (PCC) from Germany and one from Switzerland included 770 paediatric cancer patients (58% males; median age 8.3 years, interquartile range (IQR) 3.8-14.8 years) comprising 153,193 individual days of surveillance (in- and outpatient days during intensive treatment). Broviac catheters were used in 63% of all patients and Ports in 20%. One hundred forty-two patients (18%; 95% CI 16 to 21%) experienced at least one BSI (179 BSIs in total; bacteraemia 70%, bacterial sepsis 27%, candidaemia 2%). In 57%, the BSI occurred in inpatients, in 79% after conventional chemotherapy. Only 56 % of the patients showed neutropenia at BSI onset. Eventually, patients with acute lymphoblastic leukaemia (ALL) or acute myeloblastic leukaemia (AML), relapsed malignancy and patients with a Broviac faced an increased risk of BSI in the multivariate analysis. Relapsed malignancy (16%) was an independent risk factor for all BSI and for Gram-positive BSI. CONCLUSION This study confirms relapsed malignancy as an independent risk factor for BSIs in paediatric cancer patients. On a unit level, data on BSIs in this high-risk population derived from prospective surveillance are not only mandatory to decide on empiric antimicrobial treatment but also beneficial in planning and evaluating preventive bundles. WHAT IS KNOWN • Paediatric cancer patients face an increased risk of nosocomial bloodstream infections (BSIs). • In most cases, these BSIs are associated with the use of a long-term central venous catheter (Broviac, Port), severe and prolonged immunosuppression (e.g. neutropenia) and other chemotherapy-induced alterations of host defence mechanisms (e.g. mucositis). What is New: • This study is the first multicentre study confirming relapsed malignancy as an independent risk factor for BSIs in paediatric cancer patients. • It describes the epidemiology of nosocomial BSI in paediatric cancer patients mainly outside the stem cell transplantation setting during conventional intensive therapy and argues for prospective surveillance programmes to target and evaluate preventive bundle interventions.