23 resultados para new isotope
Resumo:
Lithium abundances and isotope compositions are reported for a suite of martian meteorites that span the range of petrological and geochemical types recognized to date for Mars. Samples include twenty-one bulk-rock enriched, intermediate and depleted shergottites, six nakhlites, two chassignites, the orthopyroxenite Allan Hills (ALH) 84001 and the polymict breccia Northwest Africa (NWA) 7034. Shergottites unaffected by terrestrial weathering exhibit a range in δ7Li from 2.1 to 6.2‰, similar to that reported for pristine terrestrial peridotites and unaltered mid-ocean ridge and ocean island basalts. Two chassignites have δ7Li values (4.0‰) intermediate to the shergottite range, and combined, these meteorites provide the most robust current constraints on δ7Li of the martian mantle. The polymict breccia NWA 7034 has the lowest δ7Li (−0.2‰) of all terrestrially unaltered martian meteorites measured to date and may represent an isotopically light surface end-member. The new data for NWA 7034 imply that martian crustal surface materials had both a lighter Li isotope composition and elevated Li abundance compared with their associated mantle. These findings are supported by Li data for olivine-phyric shergotitte NWA 1068, a black glass phase isolated from the Tissint meteorite fall, and some nakhlites, which all show evidence for assimilation of a low-δ7Li crustal component. The range in δ7Li for nakhlites (1.8 to 5.2‰), and co-variations with chlorine abundance, suggests crustal contamination by Cl-rich brines. The differences in Li isotope composition and abundance between the martian mantle and estimated crust are not as large as the fractionations observed for terrestrial continental crust and mantle, suggesting a difference in the styles of alteration and weathering between water-dominated processes on Earth versus possibly Cl–S-rich brines on Mars. Using high-MgO shergottites (>15 wt.% MgO) it is possible to estimate the δ7Li of Bulk Silicate Mars (BSM) to be 4.2 ± 0.9‰ (2σ). This value is at the higher end of estimates for the Bulk Silicate Earth (BSE; 3.5 ± 1.0‰, 2σ), but overlaps within uncertainty.
Resumo:
Palaeoclimatic information can be retrieved from the diffusion of the stable water isotope signal during firnification of snow. The diffusion length, a measure for the amount of diffusion a layer has experienced, depends on the firn temperature and the accumulation rate. We show that the estimation of the diffusion length using power spectral densities (PSDs) of the record of a single isotope species can be biased by uncertainties in spectral properties of the isotope signal prior to diffusion. By using a second water isotope and calculating the difference in diffusion lengths between the two isotopes, this problem is circumvented. We study the PSD method applied to two isotopes in detail and additionally present a new forward diffusion method for retrieving the differential diffusion length based on the Pearson correlation between the two isotope signals. The two methods are discussed and extensively tested on synthetic data which are generated in a Monte Carlo manner. We show that calibration of the PSD method with this synthetic data is necessary to be able to objectively determine the differential diffusion length. The correlation-based method proves to be a good alternative for the PSD method as it yields precision equal to or somewhat higher than the PSD method. The use of synthetic data also allows us to estimate the accuracy and precision of the two methods and to choose the best sampling strategy to obtain past temperatures with the required precision. In addition to application to synthetic data the two methods are tested on stable-isotope records from the EPICA (European Project for Ice Coring in Antarctica) ice core drilled in Dronning Maud Land, Antarctica, showing that reliable firn temperatures can be reconstructed with a typical uncertainty of 1.5 and 2 °C for the Holocene period and 2 and 2.5 °C for the last glacial period for the correlation and PSD method, respectively.
Resumo:
Deuterium (δD) and oxygen (δ18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of δ17O excess derived from precise measurement of δ17O and δ18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17O excess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (δD,δ17O and δ18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean δD,δ18O and δ17O are -71.0‰, -9.9‰, -5.2‰ for precipitation, -60.3‰, -8.7‰, -4.6‰ for cave drip water and -61.3‰, -8.3‰, -4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17O excess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (Δ of ~ + 10‰ for δD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8 - 10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first δ17O measurement in speleothem fluid inclusions, as well as the first comparison of the δ17 O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems. This study on precipitation, drip water and fluid inclusions will be used as a speleothem proxy calibration for Milandre cave in order to reconstruct paleotemperatures and moisture source variations for Western Central Europe.
Resumo:
The 220 abundantly equipped burials from the Late Iron Age cemetery of Münsingen (420 – 240 BC) marked a milestone for Iron Age research. The evident horizontal spread throughout the time of occupancy laid the foundation for the chronology system of the Late Iron Age. Today the skulls of 77 individuals and some postcranial bones are still preserved. The aim was to obtain information about nutrition, social stratification and migration of the individuals from Münsingen. Stable isotope ratios of carbon, nitrogen and sulphur were analysed. The results of 63 individuals show that all consumed C3 plants as staple food with significant differences between males and females in δ13C and δ15N values. The results indicate a gender restriction in access to animal protein. Stable isotope values of one male buried with weapons and meat as grave goods suggest a diet with more animal proteins than the other individuals. It is possible that he was privileged due to high status. Furthermore, the δ34S values indicate minor mobility. Assuming that the subadults represent the local signal of δ34S it is very likely that adults with enriched δ34S could have migrated to Münsingen at some point during their lives. This study presents stable isotope values of one of the most important Late Iron Age burial sites in Central Europe. The presented data provide new insight into diet, migration and social stratification of the population from Münsingen.
Resumo:
Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial–interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (δ18Os and δ13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct δ18O of lake water (δ18Olw) over the last 637 ka. Interglacials have higher δ18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5, and the Holocene. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within Lake Ohrid.
Resumo:
Keywords High-pressure fluids · Whiteschists · U–Pb dating · Oxygen isotopes · Ion microprobe · Metasomatism Introduction The subduction of crustal material to mantle depths and its chemical modification during burial and exhumation contribute to element recycling in the mantle and the formation of new crust through arc magmatism. Crustal rocks that Abstract The Dora-Maira whiteschists derive from metasomatically altered granites that experienced ultrahighpressure metamorphism at ~750 °C and 40 kbar during the Alpine orogeny. In order to investigate the P–T–time– fluid evolution of the whiteschists, we obtained U–Pb ages from zircon and monazite and combined those with trace element composition and oxygen isotopes of the accessory minerals and coexisting garnet. Zircon cores are the only remnants of the granitic protolith and still preserve a Permian age, magmatic trace element compositions and δ18O of ~10 ‰. Thermodynamic modelling of Si-rich and Si-poor whiteschist compositions shows that there are two main fluid pulses during prograde subduction between 20 and 40 kbar. In Si-poor samples, the breakdown of chlorite to garnet + fluid occurs at ~22 kbar. A first zircon rim directly overgrowing the cores has inclusions of prograde phlogopite and HREE-enriched patterns indicating zircon growth at the onset of garnet formation. A second main fluid pulse is documented close to peak metamorphic conditions in both Si-rich and Si-poor whiteschist when talc + kyanite react to garnet + coesite + fluid. A second metamorphic overgrowth on zircon with HREE depletion was observed in the Si-poor whiteschists, whereas a single metamorphic overgrowth capturing phengite and talc inclusions was observed in the Si-rich whiteschists. Garnet rims, zircon rims and monazite are in chemical and isotopic equilibrium for oxygen, demonstrating that they all formed at peak metamorphism at 35 Ma as constrained by the age of monazite (34.7 ± 0.4 Ma) and zircon rims (35.1 ± 0.8 Ma). The prograde zircon rim in Si-poor whiteschists has an age that is within error indistinguishable from the age of peak metamorphic conditions, consistent with a minimum rate of subduction of 2 cm/year for the Dora-Maira unit. Oxygen isotope values for zircon rims, monazite and garnet are equal within error at 6.4 ± 0.4 ‰, which is in line with closed-system equilibrium fractionation during prograde to peak temperatures. The resulting equilibrium Δ18Ozircon-monazite at 700 ± 20 °C is 0.1 ± 0.7 ‰. The in situ oxygen isotope data argue against an externally derived input of fluids into the whiteschists. Instead, fluidassisted zircon and monazite recrystallisation can be linked to internal dehydration reactions during prograde subduction. We propose that the major metasomatic event affecting the granite protolith was related to hydrothermal seafloor alteration post-dating Jurassic rifting, well before the onset of Alpine subduction.
Resumo:
We present new δ¹³C measurements of atmospheric CO₂ covering the last glacial/interglacial cycle, complementing previous records covering Terminations I and II. Most prominent in the new record is a significant depletion in δ¹³C(atm) of 0.5‰ occurring during marine isotope stage (MIS) 4, followed by an enrichment of the same magnitude at the beginning of MIS 3. Such a significant excursion in the record is otherwise only observed at glacial terminations, suggesting that similar processes were at play, such as changing sea surface temperatures, changes in marine biological export in the Southern Ocean (SO) due to variations in aeolian iron fluxes, changes in the Atlantic meridional overturning circulation, upwelling of deep water in the SO, and long-term trends in terrestrial carbon storage. Based on previous modeling studies, we propose constraints on some of these processes during specific time intervals. The decrease in δ¹³C(atm) at the end of MIS 4 starting approximately 64 kyr B.P. was accompanied by increasing [CO₂]. This period is also marked by a decrease in aeolian iron flux to the SO, followed by an increase in SO upwelling during Heinrich event 6, indicating that it is likely that a large amount of δ¹³C-depleted carbon was transferred to the deep oceans previously, i.e., at the onset of MIS 4. Apart from the upwelling event at the end of MIS 4 (and potentially smaller events during Heinrich events in MIS 3), upwelling of deep water in the SO remained reduced until the last glacial termination, whereupon a second pulse of isotopically light carbon was released into the atmosphere.
Resumo:
Oxygen and hydrogen isotope analyses of rainfall samples collected on the eastern Batinah coastal plain of northern Oman between 1995 and 1998 indicate two different principal water vapor sources for precipitation in the area: a northern, Mediterranean source and a southern, Indian Ocean source. As a result, two new local meteoric water lines were defined for the study area. Isotopic analyses of groundwater samples from over 200 springs and wells indicate that the main source of water to the Batinah coastal alluvial aquifer is high-altitude rainfall from the adjacent Jabal Akhdar Mountains, originating from a combination of northern and southern moisture sources. The groundwater recharged at high-altitude forms two plumes of water which is depleted in the heavy isotopes 18O and 2H and stretches from the mountains across the coastal plain to the sea, thereby retaining a chemical homogeneity horizontally and vertically down to a depth exceeding 300 m. In contrast, in areas adjacent to these two plumes the alluvial aquifer is geochemically stratified. Near the coast, saline intrusion results in abrupt changes in chloride concentrations and isotope values.