28 resultados para multivariate data
Resumo:
The objective of this study was to characterize empirically the association between vaccination coverage and the size and occurrence of measles epidemics in Germany. In order to achieve this we analysed data routinely collected by the Robert Koch Institute, which comprise the weekly number of reported measles cases at all ages as well as estimates of vaccination coverage at the average age of entry into the school system. Coverage levels within each federal state of Germany are incorporated into a multivariate time-series model for infectious disease counts, which captures occasional outbreaks by means of an autoregressive component. The observed incidence pattern of measles for all ages is best described by using the log proportion of unvaccinated school starters in the autoregressive component of the model.
Resumo:
Currently, a variety of linear and nonlinear measures is in use to investigate spatiotemporal interrelation patterns of multivariate time series. Whereas the former are by definition insensitive to nonlinear effects, the latter detect both nonlinear and linear interrelation. In the present contribution we employ a uniform surrogate-based approach, which is capable of disentangling interrelations that significantly exceed random effects and interrelations that significantly exceed linear correlation. The bivariate version of the proposed framework is explored using a simple model allowing for separate tuning of coupling and nonlinearity of interrelation. To demonstrate applicability of the approach to multivariate real-world time series we investigate resting state functional magnetic resonance imaging (rsfMRI) data of two healthy subjects as well as intracranial electroencephalograms (iEEG) of two epilepsy patients with focal onset seizures. The main findings are that for our rsfMRI data interrelations can be described by linear cross-correlation. Rejection of the null hypothesis of linear iEEG interrelation occurs predominantly for epileptogenic tissue as well as during epileptic seizures.
Resumo:
Triggered event-related functional magnetic resonance imaging requires sparse intervals of temporally resolved functional data acquisitions, whose initiation corresponds to the occurrence of an event, typically an epileptic spike in the electroencephalographic trace. However, conventional fMRI time series are greatly affected by non-steady-state magnetization effects, which obscure initial blood oxygen level-dependent (BOLD) signals. Here, conventional echo-planar imaging and a post-processing solution based on principal component analysis were employed to remove the dominant eigenimages of the time series, to filter out the global signal changes induced by magnetization decay and to recover BOLD signals starting with the first functional volume. This approach was compared with a physical solution using radiofrequency preparation, which nullifies magnetization effects. As an application of the method, the detectability of the initial transient BOLD response in the auditory cortex, which is elicited by the onset of acoustic scanner noise, was used to demonstrate that post-processing-based removal of magnetization effects allows to detect brain activity patterns identical with those obtained using the radiofrequency preparation. Using the auditory responses as an ideal experimental model of triggered brain activity, our results suggest that reducing the initial magnetization effects by removing a few principal components from fMRI data may be potentially useful in the analysis of triggered event-related echo-planar time series. The implications of this study are discussed with special caution to remaining technical limitations and the additional neurophysiological issues of the triggered acquisition.
Resumo:
OBJECTIVE: To describe the electronic medical databases used in antiretroviral therapy (ART) programmes in lower-income countries and assess the measures such programmes employ to maintain and improve data quality and reduce the loss of patients to follow-up. METHODS: In 15 countries of Africa, South America and Asia, a survey was conducted from December 2006 to February 2007 on the use of electronic medical record systems in ART programmes. Patients enrolled in the sites at the time of the survey but not seen during the previous 12 months were considered lost to follow-up. The quality of the data was assessed by computing the percentage of missing key variables (age, sex, clinical stage of HIV infection, CD4+ lymphocyte count and year of ART initiation). Associations between site characteristics (such as number of staff members dedicated to data management), measures to reduce loss to follow-up (such as the presence of staff dedicated to tracing patients) and data quality and loss to follow-up were analysed using multivariate logit models. FINDINGS: Twenty-one sites that together provided ART to 50 060 patients were included (median number of patients per site: 1000; interquartile range, IQR: 72-19 320). Eighteen sites (86%) used an electronic database for medical record-keeping; 15 (83%) such sites relied on software intended for personal or small business use. The median percentage of missing data for key variables per site was 10.9% (IQR: 2.0-18.9%) and declined with training in data management (odds ratio, OR: 0.58; 95% confidence interval, CI: 0.37-0.90) and weekly hours spent by a clerk on the database per 100 patients on ART (OR: 0.95; 95% CI: 0.90-0.99). About 10 weekly hours per 100 patients on ART were required to reduce missing data for key variables to below 10%. The median percentage of patients lost to follow-up 1 year after starting ART was 8.5% (IQR: 4.2-19.7%). Strategies to reduce loss to follow-up included outreach teams, community-based organizations and checking death registry data. Implementation of all three strategies substantially reduced losses to follow-up (OR: 0.17; 95% CI: 0.15-0.20). CONCLUSION: The quality of the data collected and the retention of patients in ART treatment programmes are unsatisfactory for many sites involved in the scale-up of ART in resource-limited settings, mainly because of insufficient staff trained to manage data and trace patients lost to follow-up.
Resumo:
BACKGROUND AND OBJECTIVES: Combination antiretroviral therapy (cART) is changing, and this may affect the type and occurrence of side effects. We examined the frequency of lipodystrophy (LD) and weight changes in relation to the use of specific drugs in the Swiss HIV Cohort Study (SHCS). METHODS: In the SHCS, patients are followed twice a year and scored by the treating physician as having 'fat accumulation', 'fat loss', or neither. Treatments, and reasons for change thereof, are recorded. Our study sample included all patients treated with cART between 2003 and 2006 and, in addition, all patients who started cART between 2000 and 2003. RESULTS: From 2003 to 2006, the percentage of patients taking stavudine, didanosine and nelfinavir decreased, the percentage taking lopinavir, nevirapine and efavirenz remained stable, and the percentage taking atazanavir and tenofovir increased by 18.7 and 22.2%, respectively. In life-table Kaplan-Meier analysis, patients starting cART in 2003-2006 were less likely to develop LD than those starting cART from 2000 to 2002 (P<0.02). LD was quoted as the reason for treatment change or discontinuation for 4% of patients on cART in 2003, and for 1% of patients treated in 2006 (P for trend <0.001). In univariate and multivariate regression analysis, patients with a weight gain of >or=5 kg were more likely to take lopinavir or atazanavir than patients without such a weight gain [odds ratio (OR) 2, 95% confidence interval (CI) 1.3-2.9, and OR 1.7, 95% CI 1.3-2.1, respectively]. CONCLUSIONS: LD has become less frequent in the SHCS from 2000 to 2006. A weight gain of more than 5 kg was associated with the use of atazanavir and lopinavir.
Resumo:
The development of coronary vasculopathy is the main determinant of long-term survival in cardiac transplantation. The identification of risk factors, therefore, seems necessary in order to identify possible treatment strategies. Ninety-five out of 397 patients, undergoing orthotopic cardiac transplantation from 10/1985 to 10/1992 were evaluated retrospectively on the basis of perioperative and postoperative variables including age, sex, diagnosis, previous operations, renal function, cholesterol levels, dosage of immunosuppressive drugs (cyclosporin A, azathioprine, steroids), incidence of rejection, treatment with calcium channel blockers at 3, 6, 12, and 18 months postoperatively. Coronary vasculopathy was assessed by annual angiography at 1 and 2 years postoperatively. After univariate analysis, data were evaluated by stepwise multiple logistic regression analysis. Coronary vasculopathy was assessed in 15 patients at 1 (16%), and in 23 patients (24%) at 2, years. On multivariate analysis, previous operations and the incidence of rejections were identified as significant risk factors (P < 0.05), whereas the underlying diagnosis had borderline significance (P = 0.058) for the development of graft coronary vasculopathy. In contrast, all other variables were not significant in our subset of patients investigated. We therefore conclude that the development of coronary vasculopathy in cardiac transplant patients mainly depends on the rejection process itself, aside from patient-dependent factors. Therapeutic measures, such as the administration of calcium channel blockers and regulation of lipid disorders, may therefore only reduce the progress of native atherosclerotic disease in the posttransplant setting.
Resumo:
Questionnaire data may contain missing values because certain questions do not apply to all respondents. For instance, questions addressing particular attributes of a symptom, such as frequency, triggers or seasonality, are only applicable to those who have experienced the symptom, while for those who have not, responses to these items will be missing. This missing information does not fall into the category 'missing by design', rather the features of interest do not exist and cannot be measured regardless of survey design. Analysis of responses to such conditional items is therefore typically restricted to the subpopulation in which they apply. This article is concerned with joint multivariate modelling of responses to both unconditional and conditional items without restricting the analysis to this subpopulation. Such an approach is of interest when the distributions of both types of responses are thought to be determined by common parameters affecting the whole population. By integrating the conditional item structure into the model, inference can be based both on unconditional data from the entire population and on conditional data from subjects for whom they exist. This approach opens new possibilities for multivariate analysis of such data. We apply this approach to latent class modelling and provide an example using data on respiratory symptoms (wheeze and cough) in children. Conditional data structures such as that considered here are common in medical research settings and, although our focus is on latent class models, the approach can be applied to other multivariate models.
Resumo:
Objective: Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. Method: TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. Results: TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. Conclusions: TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy.
Resumo:
BACKGROUND Prostate cancer (PCa) is the second most common disease among men worldwide. It is important to know survival outcomes and prognostic factors for this disease. Recruitment for the largest therapeutic randomised controlled trial in PCa-the Systemic Therapy in Advancing or Metastatic Prostate Cancer: Evaluation of Drug Efficacy: A Multi-Stage Multi-Arm Randomised Controlled Trial (STAMPEDE)-includes men with newly diagnosed metastatic PCa who are commencing long-term androgen deprivation therapy (ADT); the control arm provides valuable data for a prospective cohort. OBJECTIVE Describe survival outcomes, along with current treatment standards and factors associated with prognosis, to inform future trial design in this patient group. DESIGN, SETTING, AND PARTICIPANTS STAMPEDE trial control arm comprising men newly diagnosed with M1 disease who were recruited between October 2005 and January 2014. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Overall survival (OS) and failure-free survival (FFS) were reported by primary disease characteristics using Kaplan-Meier methods. Hazard ratios and 95% confidence intervals (CIs) were derived from multivariate Cox models. RESULTS AND LIMITATIONS A cohort of 917 men with newly diagnosed M1 disease was recruited to the control arm in the specified interval. Median follow-up was 20 mo. Median age at randomisation was 66 yr (interquartile range [IQR]: 61-71), and median prostate-specific antigen level was 112 ng/ml (IQR: 34-373). Most men (n=574; 62%) had bone-only metastases, whereas 237 (26%) had both bone and soft tissue metastases; soft tissue metastasis was found mainly in distant lymph nodes. There were 238 deaths, 202 (85%) from PCa. Median FFS was 11 mo; 2-yr FFS was 29% (95% CI, 25-33). Median OS was 42 mo; 2-yr OS was 72% (95% CI, 68-76). Survival time was influenced by performance status, age, Gleason score, and metastases distribution. Median survival after FFS event was 22 mo. Trial eligibility criteria meant men were younger and fitter than general PCa population. CONCLUSIONS Survival remains disappointing in men presenting with M1 disease who are started on only long-term ADT, despite active treatments being available at first failure of ADT. Importantly, men with M1 disease now spend the majority of their remaining life in a state of castration-resistant relapse. PATIENT SUMMARY Results from this control arm cohort found survival is relatively short and highly influenced by patient age, fitness, and where prostate cancer has spread in the body.
Resumo:
This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb−1 of LHC proton–proton collision data taken at centre-of-mass energies of √s = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV.
Resumo:
Background Protein-energy-malnutrition (PEM) is common in people with end stage kidney disease (ESKD) undergoing maintenance haemodialysis (MHD) and correlates strongly with mortality. To this day, there is no gold standard for detecting PEM in patients on MHD. Aim of Study The aim of this study was to evaluate if Nutritional Risk Screening 2002 (NRS-2002), handgrip strength measurement, mid-upper arm muscle area (MUAMA), triceps skin fold measurement (TSF), serum albumin, normalised protein catabolic rate (nPCR), Kt/V and eKt/V, dry body weight, body mass index (BMI), age and time since start on MHD are relevant for assessing PEM in patients on MHD. Methods The predictive value of the selected parameters on mortality and mortality or weight loss of more than 5% was assessed. Quantitative data analysis of the 12 parameters in the same patients on MHD in autumn 2009 (n = 64) and spring 2011 (n = 40) with paired statistical analysis and multivariate logistic regression analysis was performed. Results Paired data analysis showed significant reduction of dry body weight, BMI and nPCR. Kt/Vtot did not change, eKt/v and hand grip strength measurements were significantly higher in spring 2011. No changes were detected in TSF, serum albumin, NRS-2002 and MUAMA. Serum albumin was shown to be the only predictor of death and of the combined endpoint “death or weight loss of more than 5%”. Conclusion We now screen patients biannually for serum albumin, nPCR, Kt/V, handgrip measurement of the shunt-free arm, dry body weight, age and time since initiation of MHD.
Resumo:
PURPOSE To identify the influence of fixed prosthesis type on biologic and technical complication rates in the context of screw versus cement retention. Furthermore, a multivariate analysis was conducted to determine which factors, when considered together, influence the complication and failure rates of fixed implant-supported prostheses. MATERIALS AND METHODS Electronic searches of MEDLINE (PubMed), EMBASE, and the Cochrane Library were conducted. Selected inclusion and exclusion criteria were used to limit the search. Data were analyzed statistically with simple and multivariate random-effects Poisson regressions. RESULTS Seventy-three articles qualified for inclusion in the study. Screw-retained prostheses showed a tendency toward and significantly more technical complications than cemented prostheses with single crowns and fixed partial prostheses, respectively. Resin chipping and ceramic veneer chipping had high mean event rates, at 10.04 and 8.95 per 100 years, respectively, for full-arch screwed prostheses. For "all fixed prostheses" (prosthesis type not reported or not known), significantly fewer biologic and technical complications were seen with screw retention. Multivariate analysis revealed a significantly greater incidence of technical complications with cemented prostheses. Full-arch prostheses, cantilevered prostheses, and "all fixed prostheses" had significantly higher complication rates than single crowns. A significantly greater incidence of technical and biologic complications was seen with cemented prostheses. CONCLUSION Screw-retained fixed partial prostheses demonstrated a significantly higher rate of technical complications and screw-retained full-arch prostheses demonstrated a notably high rate of veneer chipping. When "all fixed prostheses" were considered, significantly higher rates of technical and biologic complications were seen for cement-retained prostheses. Multivariate Poisson regression analysis failed to show a significant difference between screw- and cement-retained prostheses with respect to the incidence of failure but demonstrated a higher rate of technical and biologic complications for cement-retained prostheses. The incidence of technical complications was more dependent upon prosthesis and retention type than prosthesis or abutment material.
Resumo:
Syndromic surveillance (SyS) systems currently exploit various sources of health-related data, most of which are collected for purposes other than surveillance (e.g. economic). Several European SyS systems use data collected during meat inspection for syndromic surveillance of animal health, as some diseases may be more easily detected post-mortem than at their point of origin or during the ante-mortem inspection upon arrival at the slaughterhouse. In this paper we use simulation to evaluate the performance of a quasi-Poisson regression (also known as an improved Farrington) algorithm for the detection of disease outbreaks during post-mortem inspection of slaughtered animals. When parameterizing the algorithm based on the retrospective analyses of 6 years of historic data, the probability of detection was satisfactory for large (range 83-445 cases) outbreaks but poor for small (range 20-177 cases) outbreaks. Varying the amount of historical data used to fit the algorithm can help increasing the probability of detection for small outbreaks. However, while the use of a 0·975 quantile generated a low false-positive rate, in most cases, more than 50% of outbreak cases had already occurred at the time of detection. High variance observed in the whole carcass condemnations time-series, and lack of flexibility in terms of the temporal distribution of simulated outbreaks resulting from low reporting frequency (monthly), constitute major challenges for early detection of outbreaks in the livestock population based on meat inspection data. Reporting frequency should be increased in the future to improve timeliness of the SyS system while increased sensitivity may be achieved by integrating meat inspection data into a multivariate system simultaneously evaluating multiple sources of data on livestock health.