35 resultados para mountain vegetation landscape


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Swiss National Research Programs (NRPs) are usually geared to addressing issues of major societal concern. In so doing these programs produce different kinds of knowledge: analytical knowledge necessary for revealing the driving forces, conflicting interests and institutional settings that govern the processes under scrutiny; target knowledge oriented towards revealing the directions in which the processes should be guided; and action knowledge that informs about the means by which this can best be achieved. Analytical knowledge answers the questions “what is the problem?” and “what causes it?” while target knowledge helps to define “what is our vision for the future?” and action knowledge deals with “how can we solve the problem?” Production of these 3 different types of knowledge is usually linked in an iterative process in the course of the research supported in an NRP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forests near the Mediterranean coast have been shaped by millennia of human disturbance. Consequently, ecological studies relying on modern observations or historical records may have difficulty assessing natural vegetation dynamics under current and future climate. We combined a sedimentary pollen record from Lago di Massacciucoli, Tuscany, Italy with simulations from the LandClim dynamic vegetation model to determine what vegetation preceded intense human disturbance, how past changes in vegetation relate to fire and browsing, and the potential of an extinct vegetation type under present climate. We simulated vegetation dynamics near Lago di Massaciucoli for the last 7,000 years using a local chironomid-inferred temperature reconstruction with combinations of three fire regimes (small infrequent, large infrequent, small frequent) and three browsing intensities (no browsing, light browsing, and moderate browsing), and compared model output to pollen data. Simulations with low disturbance support pollen-inferred evidence for a mixed forest dominated by Quercus ilex (a Mediterranean species) and Abies alba (a montane species). Whereas pollen data record the collapse of A. alba after 6000 cal yr bp, simulated populations expanded with declining summer temperatures during the late Holocene. Simulations with increased fire and browsing are consistent with evidence for expansion by deciduous species after A. alba collapsed. According to our combined paleo-environmental and modeling evidence, mixed Q. ilex and A. alba forests remain possible with current climate and limited disturbance, and provide a viable management objective for ecosystems near the Mediterranean coast and in regions that are expected to experience a mediterranean-type climate in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in agricultural practices of semi-natural mountain grasslands are expected to modify plant community structure and shift dominance patterns. Using vegetation surveys of 11 sites in semi-natural grasslands of the Swiss Jura and Swiss and French Alps, we determined the relative contribution of dominant, subordinate and transient plant species in grazed and abandoned communities and observed their changes along a gradient of productivity and in response to abandonment of pasturing. The results confirm the humpbacked diversity–productivity relationship in semi-natural grassland, which is due to the increase of subordinate species number at intermediate productivity levels. Grazed communities, at the lower or higher end of the species diversity gradient, suffered higher species loss after grazing abandonment. Species loss after abandonment of pasturing was mainly due to a higher reduction in the number of subordinate species, as a consequence of the increasing proportion of dominant species. When plant biodiversity maintenance is the aim, our results have direct implications for the way grasslands should be managed. Indeed, while intensification and abandonment have been accelerated since few decades, our findings in this multi-site analysis confirm the importance of maintaining intermediate levels of pasturing to preserve biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: We investigate the response of vegetation composition and plant diversity to increasing land clearance, burning and agriculture at the Mesolithic–Neolithic transition (c. 6400–5000 bc) when first farming was introduced. Location: The Valais, a dry alpine valley in Switzerland. Methods: We combine high-resolution pollen, microscopic charcoal and sedimentological data to reconstruct past vegetation, fire and land use. Pollen evenness, rarefaction-based and accumulation-based palynological richness analyses were used to reconstruct past trends in plant diversity. Results: Our results show that from c. 5500 cal. yr bc, slash-and-burn activities created a more open landscape for agriculture, at the expense of Pinus and Betula forests. Land clearance by slash-and-burn promoted diverse grassland ecosystems, while on the long term it reduced woodland and forest diversity, affecting important tree species such as Ulmus and Tilia. Main conclusions: Understanding the resilience of Alpine ecosystems to past disturbance variability is relevant for future nature conservation plans. Our study suggests that forecasted land abandonment in the Alps will lead to pre-Neolithic conditions, with significant biodiversity losses in abandoned grassland ecosystems. Thus, management measures for biodiversity, such as ecological compensation areas, are needed in agricultural landscapes with a millennial history of human impact, such as the non-boreal European lowlands. Our study supports the hypothesis that species coexistence is maximized at an intermediate level of disturbances. For instance, species richness decreased when fire exceeded the quasi-natural variability observed during the Mesolithic times. Under a more natural disturbance regime, rather closed Pinus sylvestris and mixed oak forests would prevail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans colonized the Balearic Islands 5-4 ka ago. They arrived in a uniquely adapted ecosystem with the Balearic mountain goat Myotragus balearicus (Bovidae, Antilopinae, Caprini) as the only large mammal. This mammal went extinct rapidly after human arrival. Several hypotheses have been proposed to explain the extinction of M. balearicus. For the present study ancient DNA analysis (Sanger sequencing, Roche-454, Ion Torrent), and pollen and macrofossil analyses were performed on preserved coprolites from M. balearicus, providing information on its diet and paleo-environment. The information retrieved shows that M. balearicus was heavily dependent on the Balearic box species Buxus balearica during at least part of the year, and that it was most probably a browser. Hindcast ecological niche modelling of B. balearica shows that local distribution of this plant species was affected by climate changes. This suggests that the extinction of M. balearicus can be related to the decline and regional extinction of a plant species that formed a major component of its diet. The vegetation change is thought to be caused by increased aridity occurring throughout the Mediterranean. Previous hypotheses relating the extinction of M. balearicus directly to the arrival of humans on the islands must therefore be adjusted. (C) 2013 University of Washington. Published by Elsevier Inn All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural intensification has caused a decline in structural elements in European farmland, where natural habitats are increasingly fragmented. The loss of habitat structures has a detrimental effect on biodiversity and affects bat species that depend on vegetation structures for foraging and commuting. We investigated the impact of connectivity and configuration of structural landscape elements on flight activity, species richness and diversity of insectivorous bats and distinguished three bat guilds according to species-specific bioacoustic characteristics. We tested whether bats with shorter-range echolocation were more sensitive to habitat fragmentation than bats with longer-range echolocation. We expected to find different connectivity thresholds for the three guilds and hypothesized that bats prefer linear over patchy landscape elements. Bat activity was quantified using repeated acoustic monitoring in 225 locations at 15 study plots distributed across the Swiss Central Plateau, where connectivity and the shape of landscape elements were determined by spatial analysis (GIS). Spectrograms of bat calls were assigned to species with the software batit by means of image recognition and statistical classification algorithms. Bat activity was significantly higher around landscape elements compared to open control areas. Short- and long-range echolocating bats were more active in well-connected landscapes, but optimal connectivity levels differed between the guilds. Species richness increased significantly with connectivity, while species diversity did not (Shannon's diversity index). Total bat activity was unaffected by the shape of landscape elements. Synthesis and applications. This study highlights the importance of connectivity in farmland landscapes for bats, with shorter-range echolocating bats being particularly sensitive to habitat fragmentation. More structurally diverse landscape elements are likely to reduce population declines of bats and could improve conditions for other declining species, including birds. Activity was highest around optimal values of connectivity, which must be evaluated for the different guilds and spatially targeted for a region's habitat configuration. In a multi-species approach, we recommend the reintroduction of structural elements to increase habitat heterogeneity should become part of agri-environment schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treelines are expected to rise to higher elevations with climate warming; the rate and extent however are still largely unknown. Here we present the first multi-proxy palaeoecological study from the treeline in the Northwestern Swiss Alps that covers the entire Holocene. We reconstructed climate, fire and vegetation dynamics at Iffigsee, an alpine lake at 2,065 m a.s.l., by using seismic sedimentary surveys, loss on ignition, visible spectrum reflectance spectroscopy, pollen, spore, macrofossil and charcoal analyses. Afforestation with Larix decidua and tree Betula (probably B. pendula) started at ~9,800 cal. b.p., more than 1,000 years later than at similar elevations in the Central and Southern Alps, indicating cooler temperatures and/or a high seasonality. Highest biomass production and forest position of ~2,100–2,300 m a.s.l. are inferred during the Holocene Thermal Maximum from 7,000 to 5,000 cal. b.p. With the onset of pastoralism and transhumance at 6,800–6,500 cal. b.p., human impact became an important factor in the vegetation dynamics at Iffigsee. This early evidence of pastoralism is documented by the presence of grazing indicators (pollen, spores), as well as a wealth of archaeological finds at the nearby mountain pass of Schnidejoch. Human and fire impact during the Neolithic and Bronze Ages led to the establishment of pastures and facilitated the expansion of Picea abies and Alnus viridis. We expect that in mountain areas with land abandonment, the treeline will react quickly to future climate warming by shifting to higher elevations, causing drastic changes in species distribution and composition as well as severe biodiversity losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in fire occurrence during the last decades in the southern Swiss Alps make knowledge on fire history essential to understand future evolution of the ecosystem composition and functioning. In this context, palaeoecology provides useful insights into processes operating at decadal-to-millennial time scales, such as the response of plant communities to intensified fire disturbances during periods of cultural change. We provide a high-resolution macroscopic charcoal and pollen series from Guèr, a well-dated peat sequence at mid-elevation (832 m.a.s.l.) in southern Switzerland, where the presence of local settlements is documented since the late Bronze Age and the Iron Age. Quantitative fire reconstruction shows that fire activity sharply increased from the Neolithic period (1–3 episodes/1000 year) to the late Bronze and Iron Age (7–9 episodes/1000 year), leading to extensive clearance of the former mixed deciduous forest (Alnus glutinosa, Betula, deciduous Quercus). The increase in anthropogenic pollen indicators (e.g. Cerealia-type, Plantago lanceolata) together with macroscopic charcoal suggests anthropogenic rather than climatic forcing as the main cause of the observed vegetation shift. Fire and controlled burning were extensively used during the late Roman Times and early Middle Ages to promote the introduction and establishment of chestnut (Castanea sativa) stands, which provided an important wood and food supply. Fire occurrence declined markedly (from 9 to 5–6 episodes/1000 year) during late Middle Ages because of fire suppression, biomass removal by human population, and landscape fragmentation. Land-abandonment during the last decades allowed forest to partly re-expand (mainly Alnus glutinosa, Betula) and fire frequency to increase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: The landscape metaphor allows viewing corrective experiences (CE) as pathway to a state with relatively lower 'tension' (local minimum). However, such local minima are not easily accessible but obstructed by states with relatively high tension (local maxima) according to the landscape metaphor (Caspar & Berger, 2012). For example, an individual with spider phobia has to transiently tolerate high levels of tension during an exposure therapy to access the local minimum of habituation. To allow for more specific therapeutic guidelines and empirically testable hypotheses, we advance the landscape metaphor to a scientific model which bases on motivational processes. Specifically, we conceptualize CEs as available but unusual trajectories (=pathways) through a motivational space. The dimensions of the motivational state are set up by basic motives such as need for agency or attachment. Methods: Dynamic system theory is used to model motivational states and trajectories using mathematical equations. Fortunately, these equations have easy-to-comprehend and intuitive visual representations similar to the landscape metaphor. Thus, trajectories that represent CEs are informative and action guiding for both therapists and patients without knowledge on dynamic systems. However, the mathematical underpinnings of the model allow researchers to deduct hypotheses for empirical testing. Results: First, the results of simulations of CEs during exposure therapy in anxiety disorders are presented and compared to empirical findings. Second, hypothetical CEs in an autonomy-attachment conflict are reported from a simulation study. Discussion: Preliminary clinical implications for the evocation of CEs are drawn after a critical discussion of the proposed model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of montane and subalpine hay meadow plant and arthropod communities to the application of liquid manure and aerial irrigation – two novel, rapidly spreading management practices – remains poorly understood, which hampers the formulation of best practice management recommendations for both hay production and biodiversity preservation. In these nutrient-poor mountain grasslands, a moderate management regime could enhance overall conditions for biodiversity. This study experimentally assessed, at the site scale, among low-input montane and subalpine meadows, the short-term effects (1 year) of a moderate intensification (slurry fertilization: 26.7–53.3 kg N·ha−1·year−1; irrigation with sprinklers: 20 mm·week−1; singly or combined together) on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass in the inner European Alps (Valais, SW Switzerland). Results show that (1) montane and subalpine hay meadow ecological communities respond very rapidly to an intensification of management practices; (2) on a short-term basis, a moderate intensification of very low-input hay meadows has positive effects on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass; (3) vegetation structure is likely to be the key factor limiting arthropod abundance and biomass. Our ongoing experiments will in the longer term identify which level of management intensity achieves an optimal balance between biodiversity and hay production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

o reconstruct the vegetation and fire history of the Upper Engadine, two continuous sediment cores from Lej da Champfèr and Lej da San Murezzan (Upper Engadine Valley, southeastern Switzerland) were analysed for pollen, plant macrofossils, charcoal and kerogen. The chronologies of the cores are based on 38 radiocarbon dates. Pollen and macrofossil data suggest a rapid afforestation with Betula, Pinus sylvestris, Pinus cembra, and Larix decidua after the retreat of the glaciers from the lake catchments 11,000 cal years ago. This vegetation type persisted until ca. 7300 cal b.p. (5350 b.c.) when Picea replaced Pinus cembra. Pollen indicative of human impact suggests that in this high-mountain region of the central Alps strong anthropogenic activities began during the Early Bronze Age (3900 cal b.p., 1950 b.c.). Local human settlements led to vegetational changes, promoting the expansion of Larix decidua and Alnus viridis. In the case of Larix, continuing land use and especially grazing after fire led to the formation of Larix meadows. The expansion of Alnus viridis was directly induced by fire, as evidenced by time-series analysis. Subsequently, the process of forest conversion into open landscapes continued for millennia and reached its maximum at the end of the Middle Ages at around 500 cal b.p. (a.d. 1450).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three well-dated pollen diagrams from 1985 m, 2050 m, and at the tree line at 2150 m asl show the vegetational succession in the central Altai Mountains since 16 cal ka BP. Pioneer vegetation after deglaciation was recorded first at the lowest site. Subsequently, dense dry steppe vegetation developed coincident with the change from silt to organic sediments at the two lower sites, but silt lasted longer at the highest site, indicating the persistence of bare ground there. Forests of Pinus sibirica, Pinus sylvestris, Picea obovata, Larix sibirica, Abies sibirica, and Betula pendula started to develop about 12 cal ka BP with the change to a warmer and wetter climate at the beginning of the Holocene. Results indicate that the timberline did not rise above the highest site. Mesophilous dark-coniferous forests were fully developed by 9.5 cal ka BP. The role of Abies and Picea decreased by about 7.5 cal ka BP suggesting cooler climate, after which the forests changed little until today. The vegetational development in this portion of the central Altai Mountains is compatible with that described in neighbouring areas of the Altai, southern Siberia, Mongolia, and Kazakhstan.