57 resultados para mitogen-induced proliferation
Resumo:
BACKGROUND: Rapamycines, sirolimus (SRL) and everolimus (ERL), are proliferation signal inhibitors (PSIs). PSI therapy often leads to edema. We hypothesized that increased oxidative stress in response to PSIs may modulate the expression of vascular endothelial (VE)-cadherin on endothelial cells (ECs) and, subsequently, vascular permeability, which in turn may be involved in the development of edema. METHODS: Experiments were performed on human umbilical vein ECs (HUVECs). Oxidative stress was measured by dichlorofluorescein-diacetate. Expression of VE-cadherin was evaluated by immunofluorescent staining and western blot analysis. Endothelial "permeability" was assessed using a transwell model. RESULTS: SRL and ERL, at concentrations of 1, 10 and 100 nmol/liter, enhanced oxidative stress (SRL: 24 +/- 12%, 29 +/- 9%, 41 +/- 13% [p < 0.05, in all three cases]; ERL: 13 +/- 10%, 27 +/- 2%, 40 +/- 12% [p < 0.05, in the latter two cases], respectively) on HUVECs, which was inhibited by the anti-oxidant, N-acetyl-cysteine (NAC) and, to a lesser extent, by the specific inhibitor of nitric oxide synthase, N-Omega-nitro-L-arginine methylester. By the use of NAC, VE-cadherin expression remained comparable with control, according to both immunocytochemistry and western blot analysis. Permeability was significantly increased by SRL and ERL at 100 nmol/liter (29.5 +/- 6.4% and 33.8 +/- 4.2%, respectively); however, co-treatment with NAC abrogated the increased permeability. CONCLUSIONS: EC homeostasis, as indicated by VE-cadherin expression, may be damaged by SRL and ERL, but resolved by the anti-oxidant NAC.
Resumo:
The mechanisms by which herbivore-attacked plants activate their defenses are well studied. By contrast, little is known about the regulatory mechanisms that allow them to control their defensive investment and avoid a defensive overshoot. We characterized a rice (Oryza sativa) WRKY gene, OsWRKY53, whose expression is rapidly induced upon wounding and induced in a delayed fashion upon attack by the striped stem borer (SSB) Chilo suppressalis. The transcript levels of OsWRKY53 are independent of endogenous jasmonic acid but positively regulated by the mitogen-activated protein kinases OsMPK3/OsMPK6. OsWRKY53 physically interacts with OsMPK3/OsMPK6 and suppresses their activity in vitro. By consequence, it modulates the expression of defensive, MPK-regulated WRKYs and thereby reduces jasmonic acid, jasmonoyl-isoleucine, and ethylene induction. This phytohormonal reconfiguration is associated with a reduction in trypsin protease inhibitor activity and improved SSB performance. OsWRKY53 is also shown to be a negative regulator of plant growth. Taken together, these results show that OsWRKY53 functions as a negative feedback modulator of MPK3/MPK6 and thereby acts as an early suppressor of induced defenses. OsWRKY53 therefore enables rice plants to control the magnitude of their defensive investment during early signaling.
Resumo:
The intracellular parasite Theileria parva infects and transforms bovine T-cells, inducing their uncontrolled proliferation and spread in non-lymphoid as well as lymphoid tissues. This parasite-induced transformation is the predominant factor contributing to the pathogenesis of a lymphoproliferative disease, called East Coast fever. T. parva-transformed cells become independent of antigenic stimulation or exogenous growth factors. A dissection of the signalling pathways that are activated in T. parva-infected cells shows that the parasite bypasses signalling pathways that normally emanate from the T-cell antigen receptor to induce continuous proliferation. This review concentrates on the influence of the parasite on the state of activation of the mitogen-activated protein kinase (MAPK), NF-kappaB and phosphoinositide-3-kinase (PI3-K) pathways in the host cell. Of the MAPKs, JNK, but not ERK or p38, is active, inducing constitutive activation of the transcription factors AP-1 and ATF-2. A crucial step in the transformation process is the persistent activation of the transcription factor NF-kappaB, which protects T. parva-transformed cells from spontaneous apoptosis accompanying the transformation process. Inhibitor studies also suggest an important role for the lipid kinase, PI-3K, in the continuous proliferation of T. parva-transformed lymphocytes.
Resumo:
BACKGROUND: Cytotoxic cells are involved in most forms of drug-induced skin diseases. Till now, no in vitro test addressed this aspect of drug-allergic responses. Our report evaluates whether drug-induced cytotoxic cells can be detected in peripheral blood of nonacute patients with different forms of drug hypersensitivity, and also whether in vitro detection of these cells could be helpful in drug-allergy diagnosis. METHODS: GranzymeB enzyme-linked immunosorbent spot-forming (ELISPOT) and cell surface expression of the degranulation marker CD107a were evaluated on peripheral blood mononuclear cells from 12 drug-allergic patients in remission state and 16 drug-exposed healthy controls. RESULTS: In 10/12 allergic patients culprit but not irrelevant drug elicited granzymeB release after 48-72 h stimulation. It was clearly positive in patients with high proliferative response to the drug, measured in lymphocyte transformation tests. In patients, who showed moderate or low proliferation and low drug-response in granzymeB ELISPOT, overnight preincubation with interleukin (IL)-7/IL-15 enhanced drug-specific granzymeB release and allowed to clearly identify the offending agent. CD107a staining was positive on CD4+/CD3+, CD8+/CD3+ T cells as well as CD56+/CD3- natural killer cells. None of the drug-exposed healthy donors reacted to the tested drugs and allergic patients reacted only to the offending, but not to tolerated drugs. CONCLUSION: GranzymeB ELISPOT is a highly specific in vitro method to detect drug-reacting cytotoxic cells in peripheral blood of drug-allergic patients even several years after disease manifestation. Together with IL-7/IL-15 preincubation, it may be helpful in indentifying the offending drug even in some patients with weak proliferative drug-response.
Resumo:
We have previously shown that EphB4 and ephrin-B2 are differentially expressed in the mammary gland and that their deregulated expression in the mammary epithelium of transgenic mice leads to perturbations of the mammary parenchyma and vasculature. In addition, overexpression of EphB4 and expression of a truncated ephrin-B2 mutant, capable of receptor stimulation but incapable of reverse signalling, confers a metastasising phenotype on NeuT initiated mouse mammary tumours. We have taken advantage of this transgenic tumour model to compare stem cell characteristics between the non-metastasising and metastasising mammary tumours. We analysed the expression of the proliferation attenuating p21(waf) gene, which was significantly increased in the metastasising tumours. Moreover, we compared the expression of CK-19, Sca-1, CD24 and CD49f as markers for progenitor cells exhibiting a decreasing differentiation grade. Sca-1 expressing cells were the earliest progenitors detected in the non-metastasising NeuT induced tumours. The metastasising NeuT/EphB4 tumours were enriched in CD24 expressing cells, whereas the metastasising NeuT/truncated ephrin-B2 tumours contained in addition significant amounts of CD49f expressing cells. The same cell populations were also enriched in mammary glands of single transgenic MMTV-EphB4 and MMTV-truncated ephrin-B2 females indicating that deregulated EphB4-ephrin-B2 signalling interferes with the homeostasis of the stem/progenitor cell pool before tumour formation is initiated. Since the same cell populations are enriched in the normal tissue, primary mammary tumours and metastases we conclude that these progenitor cells were the origin of tumour formation and that this change in the tumour origin has led to the acquisition of the metastatic tumour phenotype.
Resumo:
Sphingosine kinases (SK) catalyse the formation of sphingosine 1-phosphate, which is a key lipid mediator regulating cell responses such as proliferation, survival and migration. Here we have investigated the effect of targeted inhibition of SK-1 on cell damage and elucidated the mechanisms involved.
Resumo:
The cannabinoid system (CS) is implicated in the regulation of hepatic fibrosis, steatosis and inflammation, with cannabinoid receptors 1 and 2 (CB1 and CB2) being involved in regulation of pro- and antifibrogenic effects. Daily cannabis smoking is an independent risk factor for the progression of fibrosis in chronic hepatitis C and a mediator of experimental alcoholic steatosis. However, the role and function of CS in alcoholic liver fibrosis (ALF) is unknown so far. Thus, human liver samples from patients with alcoholic liver disease (ALD) were collected for analysis of CB1 expression. In vitro, hepatic stellate cells (HSC) underwent treatment with acetaldehyde, Δ9-tetrahydrocannabinol H(2)O(2), endo- and exocannabinoids (2-arachidonoylglycerol (2-AG) and [THC]), and CB1 antagonist SR141716 (rimonabant). In vivo, CB1 knockout (KO) mice received thioacetamide (TAA)/ethanol (EtOH) to induce fibrosis. As a result, in human ALD, CB1 expression was restricted to areas with advanced fibrosis only. In vitro, acetaldehyde, H(2)O(2), as well as 2-AG and THC, alone or in combination with acetaldehyde, induced CB1 mRNA expression, whereas CB1 blockage with SR141716 dose-dependently inhibited HSC proliferation and downregulated mRNA expression of fibrosis-mediated genes PCα1(I), TIMP-1 and MMP-13. This was paralleled by marked cytotoxicity of SR141716 at high doses (5-10 μmol/L). In vivo, CB1 knockout mice showed marked resistance to alcoholic liver fibrosis. In conclusion, CB1 expression is upregulated in human ALF, which is at least in part triggered by acetaldehyde (AA) and oxidative stress. Inhibition of CB1 by SR141716, or via genetic knock-out protects against alcoholic-induced fibrosis in vitro and in vivo.
Resumo:
The immune response of mice experimentally infected with Echinococcus multilocularis metacestodes becomes impaired so as to allow parasite survival and proliferation. Our study tackled the question on how different classes of E. multilocularis antigens (crude vesicular fluid (VF); purified proteinic rec-14-3-3; purified carbohydrate Em2(G11)) are involved in the maturation process of bone-marrow-derived dendritic cells (BMDCs) and subsequent exposure to lymph node (LN) cells. In our experiments, we used BMDCs cultivated from either naïve (control) or alveolar echinococcosis (AE)-infected C57BL/6 mice. We then tested surface markers (CD80, CD86, MHC class II) and cytokine expression levels (interleukin (IL)-10, IL-12p40 and tumour necrosis factor (TNF)-α) of non-stimulated BMDCs versus BMDCs stimulated with different Em-antigens or lipopolysaccharide (LPS). While LPS and rec-14-3-3-antigen were able to induce CD80, CD86 and (to a lower extent) MHC class II surface expression, Em2(G11) and, strikingly, also VF-antigen failed to do so. Similarly, LPS and rec-14-3-3 yielded elevated IL-12, TNF-α and IL-10 expression levels, while Em2(G11) and VF-antigen didn't. When naïve BMDCs were loaded with VF-antigen, they induced a strong non-specific proliferation of uncommitted LN cells. For both, BMDCs or LN cells, isolated from AE-infected mice, proliferation was abrogated. The most striking difference, revealed by comparing naïve with AE-BMDCs, was the complete inability of LPS-stimulated AE-BMDCs to activate lymphocytes from any LN cell group. Overall, the presenting activity of BMDCs from AE-infected mice seemed to trigger unresponsiveness in T cells, especially in the case of VF-antigen stimulation, thus contributing to the suppression of clonal expansion during the chronic phase of AE infection.
Resumo:
The single nucleotide polymorphism (SNP) rs2542151 within the gene locus region encoding protein tyrosine phosphatase non-receptor type 2 (PTPN2) has been associated with Crohn's disease (CD), ulcerative colitis (UC), type-I diabetes, and rheumatoid arthritis. We have previously shown that PTPN2 regulates mitogen-activated protein kinase (MAPK) signaling and cytokine secretion in human THP-1 monocytes and intestinal epithelial cells (IEC). Here, we studied whether intronic PTPN2 SNP rs1893217 regulates immune responses to the nucleotide-oligomerization domain 2 (NOD2) ligand, muramyl-dipeptide (MDP).
Resumo:
GPR55 is activated by l-α-lysophosphatidylinositol (LPI) but also by certain cannabinoids. In this study, we investigated the GPR55 pharmacology of various cannabinoids, including analogues of the CB1 receptor antagonist Rimonabant®, CB2 receptor agonists, and Cannabis sativa constituents. To test ERK1/2 phosphorylation, a primary downstream signaling pathway that conveys LPI-induced activation of GPR55, a high throughput system, was established using the AlphaScreen® SureFire® assay. Here, we show that CB1 receptor antagonists can act both as agonists alone and as inhibitors of LPI signaling under the same assay conditions. This study clarifies the controversy surrounding the GPR55-mediated actions of SR141716A; some reports indicate the compound to be an agonist and some report antagonism. In contrast, we report that the CB2 ligand GW405833 behaves as a partial agonist of GPR55 alone and enhances LPI signaling. GPR55 has been implicated in pain transmission, and thus our results suggest that this receptor may be responsible for some of the antinociceptive actions of certain CB2 receptor ligands. The phytocannabinoids Δ9-tetrahydrocannabivarin, cannabidivarin, and cannabigerovarin are also potent inhibitors of LPI. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.
Resumo:
The intracellular parasite Theileria induces uncontrolled proliferation and host cell transformation. Parasite-induced transformation is accompanied by constitutive activation of IkappaB kinase (IKK), resulting in permanently high levels of activated nuclear factor (NF)-kappaB. IKK activation pathways normally require heat shock protein 90 (Hsp90), a chaperone that regulates the stability and activity of signalling molecules and can be blocked by the benzoquinone ansamycin compound geldanamycin (GA). In Theileria-transformed cells, IkappaBalpha and p65 phosphorylation, NF-kappaB nuclear translocation and DNA binding activity are largely resistant to GA and also NF-kappaB-dependent reporter gene expression is only partly affected. Our findings indicate that parasite-induced IKK activity does not require functional Hsp90.
Resumo:
The intracellular protozoan parasites Theileria parva and T. annulata transform the cells they infect, inducing uncontrolled proliferation. This is not a trivial event as, in addition to permanently switching on the complex pathways that govern all steps of the cell cycle, the built-in apoptotic safety mechanisms that prevent 'illegitimate' cell replication also need to be inactivated. Recent experiments show that the NF-kappa B and phosphoinositide 3-kinase (PtdIns-3K) pathways are important participants in the transformation process. I kappa B kinase (IKK), a pivotal kinase complex in the NF-kappa B pathway, is recruited to the parasite surface where it becomes activated. The PtdIns-3K/Akt/PKB pathway is also constitutively activated in a parasite-dependent manner, but contrary to IKK, activation is probably not triggered by direct association with the parasite.
Resumo:
Lymphocyte homeostasis is regulated by mechanisms that control lymphocyte proliferation and apoptosis. Activation-induced cell death is mediated by the expression of death ligands and receptors, which, when triggered, activate an apoptotic cascade. Bovine T cells transformed by the intracellular parasite Theileria parva proliferate in an uncontrolled manner and undergo clonal expansion. They constitutively express the death receptor Fas and its ligand, FasL but do not undergo apoptosis. Upon elimination of the parasite from the host cell by treatment with a theilericidal drug, cells become increasingly sensitive to Fas/FasL-induced apoptosis. In normal T cells, the sensitivity to death receptor killing is regulated by specific inhibitor proteins. We found that anti-apoptotic proteins such as cellular (c)-FLIP, which functions as a catalytically inactive form of caspase-8, and X-chromosome-linked inhibitor of apoptosis protein (IAP) as well as c-IAP, which can block downstream executioner caspases, are constitutively expressed in T. parva-transformed T cells. Expression of these proteins is rapidly down-regulated upon parasite elimination. Antiapoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L) are also expressed but, in contrast to c-FLIP, c-IAP, and X-chromosome-linked IAP, do not appear to be tightly regulated by the presence of the parasite. Finally, we show that, in contrast to the situation in tumor cells, the phosphoinositide 3-kinase/Akt pathway is not essential for c-FLIP expression. Our findings indicate that by inducing the expression of antiapoptotic proteins, T. parva allows the host cell to escape destruction by homeostatic mechanisms that would normally be activated to limit the continuous expansion of a T cell population.
Resumo:
The majority of mutations that cause isolated GH deficiency type II (IGHD II) affect splicing of GH-1 transcripts and produce a dominant-negative GH isoform lacking exon 3 resulting in a 17.5-kDa isoform, which further leads to disruption of the GH secretory pathway. A clinical variability in the severity of the IGHD II phenotype depending on the GH-1 gene alteration has been reported, and in vitro and transgenic animal data suggest that the onset and severity of the phenotype relates to the proportion of 17.5-kDa produced. The removal of GH in IGHD creates a positive feedback loop driving more GH expression, which may itself increase 17.5-kDa isoform productions from alternate splice sites in the mutated GH-1 allele. In this study, we aimed to test this idea by comparing the impact of stimulated expression by glucocorticoids on the production of different GH isoforms from wild-type (wt) and mutant GH-1 genes, relying on the glucocorticoid regulatory element within intron 1 in the GH-1 gene. AtT-20 cells were transfected with wt-GH or mutated GH-1 variants (5'IVS-3 + 2-bp T->C; 5'IVS-3 + 6 bp T->C; ISEm1: IVS-3 + 28 G->A) known to cause clinical IGHD II of varying severity. Cells were stimulated with 1 and 10 mum dexamethasone (DEX) for 24 h, after which the relative amounts of GH-1 splice variants were determined by semiquantitative and quantitative (TaqMan) RT-PCR. In the absence of DEX, only around 1% wt-GH-1 transcripts were the 17.5-kDa isoform, whereas the three mutant GH-1 variants produced 29, 39, and 78% of the 17.5-kDa isoform. DEX stimulated total GH-1 gene transcription from all constructs. Notably, however, DEX increased the amount of 17.5-kDa GH isoform relative to the 22- and 20-kDa isoforms produced from the mutated GH-1 variants, but not from wt-GH-1. This DEX-induced enhancement of 17.5-kDa GH isoform production, up to 100% in the most severe case, was completely blocked by the addition of RU486. In other studies, we measured cell proliferation rates, annexin V staining, and DNA fragmentation in cells transfected with the same GH-1 constructs. The results showed that that the 5'IVS-3 + 2-bp GH-1 gene mutation had a more severe impact on those measures than the splice site mutations within 5'IVS-3 + 6 bp or ISE +28, in line with the clinical severity observed with these mutations. Our findings that the proportion of 17.5-kDa produced from mutant GH-1 alleles increases with increased drive for gene expression may help to explain the variable onset progression, and severity observed in IGHD II.
Gene transfer of hepatocyte growth factor by electroporation reduces bleomycin-induced lung fibrosis
Resumo:
Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar wound repair in vitro was determined using an epithelial wound repair model with HGF-transfected A549 alveolar epithelial cells. Electroporation-mediated, nonviral gene transfer of HGF in vivo was performed 7 days after bleomycin-induced lung injury in the rat. Alveolar epithelial repair in vitro was increased after transfection of wounded epithelial monolayers with a plasmid encoding human HGF, pCikhHGF [human HGF (hHGF) gene expressed from the cytomegalovirus (CMV) immediate-early promoter and enhancer] compared with medium control. Electroporation-mediated in vivo HGF gene transfer using pCikhHGF 7 days after intratracheal bleomycin reduced pulmonary fibrosis as assessed by histology and hydroxyproline determination 14 days after bleomycin compared with controls treated with the same vector not containing the HGF sequence (pCik). Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-beta1 (TGF-beta1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-beta1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.