23 resultados para mean-variance estimation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Individuals with type 1 diabetes (T1D) have to count the carbohydrates (CHOs) of their meal to estimate the prandial insulin dose needed to compensate for the meal’s effect on blood glucose levels. CHO counting is very challenging but also crucial, since an error of 20 grams can substantially impair postprandial control. Method: The GoCARB system is a smartphone application designed to support T1D patients with CHO counting of nonpacked foods. In a typical scenario, the user places a reference card next to the dish and acquires 2 images with his/her smartphone. From these images, the plate is detected and the different food items on the plate are automatically segmented and recognized, while their 3D shape is reconstructed. Finally, the food volumes are calculated and the CHO content is estimated by combining the previous results and using the USDA nutritional database. Results: To evaluate the proposed system, a set of 24 multi-food dishes was used. For each dish, 3 pairs of images were taken and for each pair, the system was applied 4 times. The mean absolute percentage error in CHO estimation was 10 ± 12%, which led to a mean absolute error of 6 ± 8 CHO grams for normal-sized dishes. Conclusion: The laboratory experiments demonstrated the feasibility of the GoCARB prototype system since the error was below the initial goal of 20 grams. However, further improvements and evaluation are needed prior launching a system able to meet the inter- and intracultural eating habits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postmortem computed tomography (pmCT) is increasingly applied in forensic medicine as a documentation and diagnostic tool. The present study investigated if pmCT data can be used to estimate the corpse weight. In 50 forensic cases, pmCT examinations were performed prior to autopsy and the pmCT data were used to determine the body volume using an automated segmentation tool. PmCT was performed within 48 h postmortem. The body weights assessed prior to autopsy and the body volumes assessed using the pmCT data were used to calculate individual multiplication factors. The mean postmortem multiplication factor for the study cases was 1.07 g/ml. Using this factor, the body weight may be estimated retrospectively when necessary. Severe artifact causing foreign bodies within the corpses limit the use of pmCT data for body weight estimations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After attending this presentation, attendees will: (1) understand how body height from computed tomography data can be estimated; and, (2) gain knowledge about the accuracy of estimated body height and limitations. The presentation will impact the forensic science community by providing knowledge and competence which will enable attendees to develop formulas for single bones to reconstruct body height using postmortem Computer Tomography (p-CT) data. The estimation of Body Height (BH) is an important component of the identification of corpses and skeletal remains. Stature can be estimated with relative accuracy via the measurement of long bones, such as the femora. Compared to time-consuming maceration procedures, p-CT allows fast and simple measurements of bones. This study undertook four objectives concerning the accuracy of BH estimation via p-CT: (1) accuracy between measurements on native bone and p-CT imaged bone (F1 according to Martin 1914); (2) intra-observer p-CT measurement precision; (3) accuracy between formula-based estimation of the BH and conventional body length measurement during autopsy; and, (4) accuracy of different estimation formulas available.1 In the first step, the accuracy of measurements in the CT compared to those obtained using an osteometric board was evaluated on the basis of eight defleshed femora. Then the femora of 83 female and 144 male corpses of a Swiss population for which p-CTs had been performed, were measured at the Institute of Forensic Medicine in Bern. After two months, 20 individuals were measured again in order to assess the intraobserver error. The mean age of the men was 53±17 years and that of the women was 61±20 years. Additionally, the body length of the corpses was measured conventionally. The mean body length was 176.6±7.2cm for men and 163.6±7.8cm for women. The images that were obtained using a six-slice CT were reconstructed with a slice thickness of 1.25mm. Analysis and measurements of CT images were performed on a multipurpose workstation. As a forensic standard procedure, stature was estimated by means of the regression equations by Penning & Riepert developed on a Southern German population and for comparison, also those referenced by Trotter & Gleser “American White.”2,3 All statistical tests were performed with a statistical software. No significant differences were found between the CT and osteometric board measurements. The double p-CT measurement of 20 individuals resulted in an absolute intra-observer difference of 0.4±0.3mm. For both sexes, the correlation between the body length and the estimated BH using the F1 measurements was highly significant. The correlation coefficient was slightly higher for women. The differences in accuracy of the different formulas were small. While the errors of BH estimation were generally ±4.5–5.0cm, the consideration of age led to an increase in accuracy of a few millimetres to about 1cm. BH estimations according to Penning & Riepert and Trotter & Gleser were slightly more accurate when age-at-death was taken into account.2,3 That way, stature estimations in the group of individuals older than 60 years were improved by about 2.4cm and 3.1cm.2,3 The error of estimation is therefore about a third of the common ±4.7cm error range. Femur measurements in p-CT allow very accurate BH estimations. Estimations according to Penning led to good results that (barely) come closer to the true value than the frequently used formulas by Trotter & Gleser “American White.”2,3 Therefore, the formulas by Penning & Riepert are also validated for this substantial recent Swiss population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Estimation of glomerular filtration rate (eGFR) using a common formula for both adult and pediatric populations is challenging. Using inulin clearances (iGFRs), this study aims to investigate the existence of a precise age cutoff beyond which the Modification of Diet in Renal Disease (MDRD), the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), or the Cockroft-Gault (CG) formulas, can be applied with acceptable precision. Performance of the new Schwartz formula according to age is also evaluated. METHOD We compared 503 iGFRs for 503 children aged between 33 months and 18 years to eGFRs. To define the most precise age cutoff value for each formula, a circular binary segmentation method analyzing the formulas' bias values according to the children's ages was performed. Bias was defined by the difference between iGFRs and eGFRs. To validate the identified cutoff, 30% accuracy was calculated. RESULTS For MDRD, CKD-EPI and CG, the best age cutoff was ≥14.3, ≥14.2 and ≤10.8 years, respectively. The lowest mean bias and highest accuracy were -17.11 and 64.7% for MDRD, 27.4 and 51% for CKD-EPI, and 8.31 and 77.2% for CG. The Schwartz formula showed the best performance below the age of 10.9 years. CONCLUSION For the MDRD and CKD-EPI formulas, the mean bias values decreased with increasing child age and these formulas were more accurate beyond an age cutoff of 14.3 and 14.2 years, respectively. For the CG and Schwartz formulas, the lowest mean bias values and the best accuracies were below an age cutoff of 10.8 and 10.9 years, respectively. Nevertheless, the accuracies of the formulas were still below the National Kidney Foundation Kidney Disease Outcomes Quality Initiative target to be validated in these age groups and, therefore, none of these formulas can be used to estimate GFR in children and adolescent populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The present study aimed at the comparison of body height estimations from cadaver length with body height estimations according to Trotter and Gleser (1952) and Penning and Riepert (2003) on the basis of femoral F1 section measurements in post-mortem computed tomography (PMCT) images. METHODS In a post-mortem study in a contemporary Swiss population (226 corpses: 143 males (mean age: 53±17years) and 83 females (mean age: 61±20years)) femoral F1 measurements (403 femora: 199 right and 204 left; 177 pairs) were conducted in PMCT images and F1 was used for body height estimation using the equations after Trotter and Gleser (1952, "American Whites"), and Penning and Riepert (2003). RESULTS The mean observed cadaver length was 176.6cm in males and 163.6cm in females. Mean measured femoral length F1 was 47.5cm (males) and 44.1cm (females) respectively. Comparison of body height estimated from PMCT F1 measurements with body height calculated from cadaver length showed a close congruence (mean difference less than 0.95cm in males and less than 1.99cm in females) for equations both applied after Penning and Riepert and Trotter and Gleser. CONCLUSIONS Femoral F1 measurements in PMCT images are very accurate, reproducible and feasible for body height estimation of a contemporary Swiss population when using the equations after Penning and Riepert (2003) or Trotter and Gleser (1952).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This package includes various Mata functions. kern(): various kernel functions; kint(): kernel integral functions; kdel0(): canonical bandwidth of kernel; quantile(): quantile function; median(): median; iqrange(): inter-quartile range; ecdf(): cumulative distribution function; relrank(): grade transformation; ranks(): ranks/cumulative frequencies; freq(): compute frequency counts; histogram(): produce histogram data; mgof(): multinomial goodness-of-fit tests; collapse(): summary statistics by subgroups; _collapse(): summary statistics by subgroups; gini(): Gini coefficient; sample(): draw random sample; srswr(): SRS with replacement; srswor(): SRS without replacement; upswr(): UPS with replacement; upswor(): UPS without replacement; bs(): bootstrap estimation; bs2(): bootstrap estimation; bs_report(): report bootstrap results; jk(): jackknife estimation; jk_report(): report jackknife results; subset(): obtain subsets, one at a time; composition(): obtain compositions, one by one; ncompositions(): determine number of compositions; partition(): obtain partitions, one at a time; npartitionss(): determine number of partitions; rsubset(): draw random subset; rcomposition(): draw random composition; colvar(): variance, by column; meancolvar(): mean and variance, by column; variance0(): population variance; meanvariance0(): mean and population variance; mse(): mean squared error; colmse(): mean squared error, by column; sse(): sum of squared errors; colsse(): sum of squared errors, by column; benford(): Benford distribution; cauchy(): cumulative Cauchy-Lorentz dist.; cauchyden(): Cauchy-Lorentz density; cauchytail(): reverse cumulative Cauchy-Lorentz; invcauchy(): inverse cumulative Cauchy-Lorentz; rbinomial(): generate binomial random numbers; cebinomial(): cond. expect. of binomial r.v.; root(): Brent's univariate zero finder; nrroot(): Newton-Raphson zero finder; finvert(): univariate function inverter; integrate_sr(): univariate function integration (Simpson's rule); integrate_38(): univariate function integration (Simpson's 3/8 rule); ipolate(): linear interpolation; polint(): polynomial inter-/extrapolation; plot(): Draw twoway plot; _plot(): Draw twoway plot; panels(): identify nested panel structure; _panels(): identify panel sizes; npanels(): identify number of panels; nunique(): count number of distinct values; nuniqrows(): count number of unique rows; isconstant(): whether matrix is constant; nobs(): number of observations; colrunsum(): running sum of each column; linbin(): linear binning; fastlinbin(): fast linear binning; exactbin(): exact binning; makegrid(): equally spaced grid points; cut(): categorize data vector; posof(): find element in vector; which(): positions of nonzero elements; locate(): search an ordered vector; hunt(): consecutive search; cond(): matrix conditional operator; expand(): duplicate single rows/columns; _expand(): duplicate rows/columns in place; repeat(): duplicate contents as a whole; _repeat(): duplicate contents in place; unorder2(): stable version of unorder(); jumble2(): stable version of jumble(); _jumble2(): stable version of _jumble(); pieces(): break string into pieces; npieces(): count number of pieces; _npieces(): count number of pieces; invtokens(): reverse of tokens(); realofstr(): convert string into real; strexpand(): expand string argument; matlist(): display a (real) matrix; insheet(): read spreadsheet file; infile(): read free-format file; outsheet(): write spreadsheet file; callf(): pass optional args to function; callf_setup(): setup for mm_callf().

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite antenna phase center offsets for the GalileoInOrbitValidation(IOV) and FullOperationalCapability (FOC) satellites are estimated by two different analysiscenters based on tracking data of a global GNSS network. The mean x- and y-offsets could be determined with a precision of a few centimeters. However, daily estimates of thex-offsets of the IOV satellites show pronounced systematic effects with a peak-to-peak amplitude of up to 70 cm that depend on the orbit model and the elevation of the Sun above the orbital plane. For the IOV y-offsets, no dependence on the orbit model exists but the scatter strongly depends on the elevation of the Sun above the orbital plane. In general, these systematic effects are significantly smaller for the FOC satellites. The z-offsets of the two analysis centers agree within the 10–15 cm level, and the time series do not show systematic effects. The application of an averaged Galileo satellite antenna model obtained from the two solutions results in a reduction of orbit day boundary discontinuities by up to one third—even if an independent software package is used.