26 resultados para male infertility
Resumo:
Human sexual determination is initiated by a cascade of genes that lead to the development of the fetal gonad. Whereas development of the female external genitalia does not require fetal ovarian hormones, male genital development requires the action of testicular testosterone and its more potent derivative dihydrotestosterone (DHT). The "classic" biosynthetic pathway from cholesterol to testosterone in the testis and the subsequent conversion of testosterone to DHT in genital skin is well established. Recently, an alternative pathway leading to DHT has been described in marsupials, but its potential importance to human development is unclear. AKR1C2 is an enzyme that participates in the alternative but not the classic pathway. Using a candidate gene approach, we identified AKR1C2 mutations with sex-limited recessive inheritance in four 46,XY individuals with disordered sexual development (DSD). Analysis of the inheritance of microsatellite markers excluded other candidate loci. Affected individuals had moderate to severe undervirilization at birth; when recreated by site-directed mutagenesis and expressed in bacteria, the mutant AKR1C2 had diminished but not absent catalytic activities. The 46,XY DSD individuals also carry a mutation causing aberrant splicing in AKR1C4, which encodes an enzyme with similar activity. This suggests a mode of inheritance where the severity of the developmental defect depends on the number of mutations in the two genes. An unrelated 46,XY DSD patient carried AKR1C2 mutations on both alleles, confirming the essential role of AKR1C2 and corroborating the hypothesis that both the classic and alternative pathways of testicular androgen biosynthesis are needed for normal human male sexual differentiation.
Resumo:
Among the huge radiations of haplochromine cichlid fish in Lakes Malawi and Victoria, closely related species are often reproductively isolated via female mate choice although viable fertile hybrids can be produced when females are confined only with heterospecific males. We generated F(2) hybrid males from a cross between a pair of closely related sympatric cichlid fish from Lake Malawi. Laboratory mate choice experiments using microsatellite paternity analysis demonstrated that F(2) hybrid males differed significantly in their attractiveness to females of the two parental species, indicating heritable variation in traits involved in mate choice that may contribute to reproductive isolation between these species. We found no significant correlation between male mating success and any measurement of male colour pattern. A simple quantitative genetic model of reproductive isolation suggests that there may be as few as two chromosomal regions controlling species-specific attractiveness. We propose that adaptive radiation of Lake Malawi cichlids could be facilitated by the presence of genes with major effects on mate choice and reproductive isolation.
Resumo:
Whether zidovudine (AZT)-associated lipoatrophy occurrence differs by concomitant exposure to protease (PIs) or non-nucleoside reverse transcriptase inhibitors (NNRTIs) remains unclear. Baseline body composition data from a randomized trial in subjects stable on first-line AZT-based therapy were used to explore this issue.
Resumo:
Following development of the fetal bipotential gonad into a testis, male genital differentiation requires testicular androgens. Fetal Leydig cells produce testosterone that is converted to dihydrotestosterone in genital skin, resulting in labio-scrotal fusion. An alternative 'backdoor' pathway of dihydrotestosterone synthesis that bypasses testosterone has been described in marsupials, but its relevance to human biology has been uncertain. The classic and backdoor pathways share many enzymes, but a 3α-reductase, AKR1C2, is unique to the backdoor pathway. Human AKR1C2 mutations cause disordered sexual differentiation, lending weight to the idea that both pathways are required for normal human male genital development. These observations indicate that fetal dihydrotestosterone acts both as a hormone and as a paracrine factor, substantially revising the classic paradigm for fetal male sexual development.
Resumo:
Environmental variation in signalling conditions affects animal communication traits, with possible consequences for sexual selection and reproductive isolation. Using spectrophotometry, we studied how male coloration within and between populations of two closely related Lake Victoria cichlid species (Pundamilia pundamilia and P. nyererei) covaries with water transparency. Focusing on coloration patches implicated in sexual selection, we predicted that in clear waters, with broad-spectrum light, (1) colours should become more saturated and (2) shift in hue away from the dominant ambient wavelengths, compared to more turbid waters. We found support for these predictions for the red and yellow coloration of P. nyererei but not the blue coloration of P. pundamilia. This may be explained by the species difference in depth distribution, which generates a steeper gradient in visual conditions for P. nyererei compared to P. pundamilia. Alternatively, the importance of male coloration in intraspecific sexual selection may differ between the species. We also found that anal fin spots, that is, the orange spots on male haplochromine anal fins that presumably mimic eggs, covaried with water transparency in a similar way for both species. This is in contrast to the other body regions studied and suggests that, while indeed functioning as signals, these spots may not play a role in species differentiation.
Resumo:
Mesenchymal stem cell (MSC) therapy has the potential to enhance muscular regeneration. In previous publications, our group was able to show a dose-response relationship in female animals between the amount of transplanted cells and muscle force. The impact of sex on the regeneration of musculoskeletal injuries following MSC transplantation remains unclear.
Resumo:
OBJECTIVE: While systemic glucocorticoids compromise bone metabolism, altered intracellular cortisol availability may also contribute to the pathogenesis of primary male osteoporosis (MO). The objective of this study was to assess whether intracellular cortisol availability is increased in MO due to a distorted local cortisol metabolism. METHODS: Forty-one patients with MO were compared with age- and BMI-matched non-osteoporotic subjects after excluding overt systemic hypercortisolism (N = 41). Cortisol, cortisone and the respective tetrahydro-, 5α-tetrahydro- and total cortisol metabolites were analysed by GC-MS in 24 h urine. Apparent 11β-hydroxysteroid dehydrogenase (11β-HSD) enzyme activities, excretion of cortisol metabolites and calcium, and fractional urinary calcium excretion were assessed and related to BMD. RESULTS: Fractional and total urinary calcium excretion negatively correlated with BMD at all (P < 0.05) and at three of five (P < 0.05) measurement sites, respectively. While systemic cortisol was unchanged, apparent 11β-HSD enzyme activity in MO patients (P < 0.01) suggested increased intracellular cortisol availability. Total and fractional urinary calcium excretion was higher, with apparent 11β-HSD enzyme activities consistent with an enhanced intracellular cortisol availability (P < 0.05). CONCLUSION: Apparent 11β-HSD enzyme activities consistent with increased intracellular cortisol availability correlated with urinary calcium loss and reduced bone mineral density in MO. The changes in 11β-HSD activity were associated with both the fractional calcium excretion, suggesting altered renal calcium handling, and the absolute urinary calcium excretion. Both mechanisms could result in a marked bone calcium deficiency if insufficiently compensated for by intestinal calcium uptake.