20 resultados para low frequency motion
Resumo:
We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low-activity state. Quasi-coherent, large-amplitude (δ B/B ~ 1), compressional magnetic field oscillations at ~ 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied cometary interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pickup-ion-driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) is a means to study the function and connectivity of brain areas. The present study addressed the question of hemispheric asymmetry of frontal regions and aimed to further understand the acute effects of high- and low-frequency rTMS on regional cerebral blood flow (rCBF). Sixteen healthy right-handed men were imaged using H(2)(15)O positron emission tomography (PET) immediately after stimulation. High (10 Hz)- and low (1 Hz)-frequency suprathreshold short-duration rTMS was applied over either the left or right dorsolateral prefrontal cortex (DLPFC). Slow and fast rTMS applied over the left DLPFC significantly increased CBF in the stimulated area. Compared to baseline, slow rTMS induced a significant increase in CBF contralateral to the stimulation site, in the right caudate body and in the anterior cingulum. Furthermore, slow rTMS decreased CBF in the orbitofrontal cortex (OFC, ipsilateral to stimulation side). Fast rTMS applied over the right DLPFC was associated with increased activity at the stimulation site, in the bilateral orbitofrontal cortex and in the left medial thalamus compared to 1-Hz rTMS. These results show that rCBF changes induced by prefrontal rTMS differ upon hemisphere stimulated and vary with stimulation frequency. These differential neurophysiological effects of short-train rTMS with respect to side and frequency suggest hemisphere-dependent functional circuits of frontal cortico-subcortical areas.
Resumo:
The goal of this study was to investigate recognition memory performance across the lifespan and to determine how estimates of recollection and familiarity contribute to performance. In each of three experiments, participants from five groups from 14 up to 85 years of age (children, young adults, middle-aged adults, young-old adults, and old-old adults) were presented with high- and low-frequency words in a study phase and were tested immediately afterwards and/or after a one day retention interval. The results showed that word frequency and retention interval affected recognition memory performance as well as estimates of recollection and familiarity. Across the lifespan, the trajectory of recognition memory followed an inverse u-shape function that was neither affected by word frequency nor by retention interval. The trajectory of estimates of recollection also followed an inverse u-shape function, and was especially pronounced for low-frequency words. In contrast, estimates of familiarity did not differ across the lifespan. The results indicate that age differences in recognition memory are mainly due to differences in processes related to recollection while the contribution of familiarity-based processes seems to be age-invariant.
Resumo:
he UV spectrum of the adenine analogue 9-methyl-2-aminopurine (9M-2AP) is investigated with one- and two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm−1 resolution in a supersonic jet. The electronic origin at 32 252 cm−1 exhibits methyl torsional subbands that originate from the 0A′′1 (l = 0) and 1E ″ (l = ±1) torsional levels. These and further torsional bands that appear up to 000+230 cm−1 allow to fit the threefold (V 3) barriers of the torsional potentials as ∣∣V′′3∣∣=50 cm−1 in the S 0 and ∣∣V′3∣∣=126 cm−1 in the S 1 state. Using the B3LYP density functional and correlated approximate second-order coupled cluster CC2 methods, the methyl orientation is calculated to be symmetric relative to the 2AP plane in both states, with barriers of V′′3=20 cm−1 and V′3=115 cm−1. The 000 rotational band contour is 75% in-plane (a/b) polarized, characteristic for a dominantly long-axis 1ππ* excitation. The residual 25% c-axis polarization may indicate coupling of the 1ππ* to the close-lying 1 nπ* state, calculated at 4.00 and 4.01 eV with the CC2 method. However, the CC2 calculated 1 nπ oscillator strength is only 6% of that of the 1ππ* transition. The 1ππ* vibronic spectrum is very complex, showing about 40 bands within the lowest 500 cm−1. The methyl torsion and the low-frequency out-of-plane ν′1 and ν′2 vibrations are strongly coupled in the 1ππ* state. This gives rise to many torsion-vibration combination bands built on out-of-plane fundamentals, which are without precedence in the 1ππ* spectrum of 9H-2-aminopurine [S. Lobsiger, R. K. Sinha, M. Trachsel, and S. Leutwyler, J. Chem. Phys.134, 114307 (2011)]. From the Lorentzian broadening needed to fit the 000 contour of 9M-2AP, the 1ππ* lifetime is τ ⩾ 120 ps, reflecting a rapid nonradiative transition.
Resumo:
Homogeneously reprocessed combined GPS/GLONASS 1- and 3-day solutions from 1994 to 2013, generated by the Center for Orbit Determination in Europe (CODE) in the frame of the second reprocessing campaign REPRO-2 of the International GNSS Service, as well as GPS- and GLONASS-only 1- and 3-day solutions for the years 2009 to 2011 are analyzed to assess the impact of the arc length on the estimated Earth Orientation Parameters (EOP, namely polar motion and length of day), on the geocenter, and on the orbits. The conventional CODE 3-day solutions assume continuity of orbits, polar motion components, and of other parameters at the day boundaries. An experimental 3-day solution, which assumes continuity of the orbits, but independence from day to day for all other parameters, as well as a non-overlapping 3-day solution, is included into our analysis. The time series of EOPs, geocenter coordinates, and orbit misclosures, are analyzed. The long-arc solutions were found to be superior to the 1-day solutions: the RMS values of EOP and geocenter series are typically reduced between 10 and 40 %, except for the polar motion rates, where RMS reductions by factors of 2–3 with respect to the 1-day solutions are achieved for the overlapping and the non-overlapping 3-day solutions. In the low-frequency part of the spectrum, the reduction is even more important. The better performance of the orbits of 3-day solutions with respect to 1-day solutions is also confirmed by the validation with satellite laser ranging.