81 resultados para lipid infusion
Resumo:
(11)C-ABP-688 is a selective tracer for the mGluR5 receptor. Its kinetics is fast and thus favourable for an equilibrium approach to determine receptor-related parameters. The purpose of this study was to test the hypothesis that the pattern of the (11)C-ABP688 uptake using a bolus-plus-infusion (B/I) protocol at early time points corresponds to the perfusion and at a later time point to the total distribution volume. METHODS: A bolus and a B/I study (1 h each) was performed in five healthy male volunteers. With the B/I protocol, early and late scans were normalized to gray matter, cerebellum and white matter. The same normalization was done on the maps of the total distribution volume (Vt) and K(1) which were calculated in the study with bolus only injection and the Logan method (Vt) and a two-tissue compartment model (K(1)). RESULTS: There was an excellent correlation close to the identity line between the pattern of the late uptake in the B/I study and Vt of the bolus-only study for all three normalizations. The pattern of the early uptake in the B/I study correlated well with the K(1) maps, but only when normalized to gray matter and cerebellum, not to white matter. CONCLUSION: It is demonstrated that with a B/I protocol the (11)C-ABP688 distribution in late scans reflects the pattern of the total distribution volume and is therefore a measure for the density pattern of mGluR5. The early scans following injection are related to blood flow, although not in a fully quantitative manner. The advantage of the B/I protocol is that no arterial blood sampling is required, which is advantageous in clinical studies.
Resumo:
Different therapeutic approaches have been used in fetal-neonatal alloimmune thrombocytopenia, but many centers administer immunoglobulin G infusions to the pregnant woman. We studied the effect of maternal antenatal immunoglobulin infusions on fetal platelet counts in pregnancies with fetal alloimmune thrombocytopenia.
Resumo:
This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patient's information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations.
Resumo:
There has been limited analysis of the effects of hepatocellular carcinoma (HCC) on liver metabolism and circulating endogenous metabolites. Here, we report the findings of a plasma metabolomic investigation of HCC patients by ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS), random forests machine learning algorithm, and multivariate data analysis. Control subjects included healthy individuals as well as patients with liver cirrhosis or acute myeloid leukemia. We found that HCC was associated with increased plasma levels of glycodeoxycholate, deoxycholate 3-sulfate, and bilirubin. Accurate mass measurement also indicated upregulation of biliverdin and the fetal bile acids 7α-hydroxy-3-oxochol-4-en-24-oic acid and 3-oxochol-4,6-dien-24-oic acid in HCC patients. A quantitative lipid profiling of patient plasma was also conducted by ultraperformance liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (UPLC-ESI-TQMS). By this method, we found that HCC was also associated with reduced levels of lysophosphocholines and in 4 of 20 patients with increased levels of lysophosphatidic acid [LPA(16:0)], where it correlated with plasma α-fetoprotein levels. Interestingly, when fatty acids were quantitatively profiled by gas chromatography-mass spectrometry (GC-MS), we found that lignoceric acid (24:0) and nervonic acid (24:1) were virtually absent from HCC plasma. Overall, this investigation illustrates the power of the new discovery technologies represented in the UPLC-ESI-QTOFMS platform combined with the targeted, quantitative platforms of UPLC-ESI-TQMS and GC-MS for conducting metabolomic investigations that can engender new insights into cancer pathobiology.
Resumo:
Intravenously administered radiolabeled peptides targeting somatostatin receptors are used for the treatment of unresectable gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Recently, we demonstrated a high first-pass effect during intra-arterial (i.a.) administration of positron emission tomography (PET) labeled (68)Ga-DOTA(0)-d-Phe(1)-Tyr(3)-octreotide (DOTATOC). In this pilot study, we investigated the therapeutic effectiveness of arterial administered DOTATOC, labeled with the therapeutic β emitters (90)Y and (177)Lu. (90)Y- and/or (177)Lu-DOTATOC were infused into the hepatic artery of 15 patients with liver metastases arising from GEP-NETs. Response was assessed using DOTATOC-PET, multiphase contrast enhanced computed tomography, magnetic resonance imaging, and the serum tumor marker chromogranin A. Pharmacokinetic data of the arterial approach were assessed using (111)In-DOTATOC scans. With the treatment regime of this pilot study, complete remission was achieved in one (7%) patient and partial remission was observed in eight (53%) patients, six patients were classified as stable (40%; response evaluation criteria in solid tumors criteria). The concomitant decrease of elevated serum tumor marker confirmed the radiologic response. Median time to progression was not reached within a mean follow-up period of 20 months. Receptor saturation and redistribution effects were identified as limiting factors for i.a. DOTATOC therapy. The high rate of objective radiologic response in NET patients treated with arterial infusion of (90)Y-/(177)Lu-DOTATOC compares favorably with systemic chemotherapy and intravenous radiopeptide therapy. While i.a. DOTATOC therapy is only applicable to patients with tumors of limited anatomic distribution, the results of this pilot study are a promising development in the treatment of GEP-NET and warrants further investigation of this novel approach.
Resumo:
The optimal exercise modality for reductions of abdominal obesity and risk factors for type 2 diabetes in youth is unknown. We examined the effects of aerobic exercise (AE) versus resistance exercise (RE) without caloric restriction on abdominal adiposity, ectopic fat, and insulin sensitivity and secretion in youth. Forty-five obese adolescent boys were randomly assigned to one of three 3-month interventions: AE, RE, or a nonexercising control. Abdominal fat was assessed by magnetic resonance imaging, and intrahepatic lipid and intramyocellular lipid were assessed by proton magnetic resonance spectroscopy. Insulin sensitivity and secretion were evaluated by a 3-h hyperinsulinemic-euglycemic clamp and a 2-h hyperglycemic clamp. Both AE and RE prevented the significant weight gain that was observed in controls. Compared with controls, significant reductions in total and visceral fat and intrahepatic lipid were observed in both exercise groups. Compared with controls, a significant improvement in insulin sensitivity (27%) was observed in the RE group. Collapsed across groups, changes in visceral fat were associated with changes in intrahepatic lipid (r = 0.72) and insulin sensitivity (r = -0.47). Both AE and RE alone are effective for reducing abdominal fat and intrahepatic lipid in obese adolescent boys. RE but not AE is also associated with significant improvements in insulin sensitivity.
Resumo:
OBJECTIVE:To determine whether low low-density lipoprotein cholesterol (LDL-C) but not high-density lipoprotein cholesterol (HDL-C) and triglyceride concentrations are associated with worse outcome in a large cohort of ischemic stroke patients treated with IV thrombolysis. METHODS:Observational multicenter post hoc analysis of prospectively collected data in stroke thrombolysis registries. Because of collinearity between total cholesterol (TC) and LDL-C, we used 2 different models with TC (model 1) and with LDL-C (model 2). RESULTS:Of the 2,485 consecutive patients, 1,847 (74%) had detailed lipid profiles available. Independent predictors of 3-month mortality were lower serum HDL-C (adjusted odds ratio [(adj)OR] 0.531, 95% confidence interval [CI] 0.321-0.877 in model 1; (adj)OR 0.570, 95% CI 0.348-0.933 in model 2), lower serum triglyceride levels ((adj)OR 0.549, 95% CI 0.341-0.883 in model 1; (adj)OR 0.560, 95% CI 0.353-0.888 in model 2), symptomatic ICH, and increasing NIH Stroke Scale score, age, C-reactive protein, and serum creatinine. TC, LDL-C, HDL-C, and triglycerides were not independently associated with symptomatic ICH. Increased HDL-C was associated with an excellent outcome (modified Rankin Scale score 0-1) in model 1 ((adj)OR 1.390, 95% CI 1.040-1.860). CONCLUSION:Lower HDL-C and triglycerides were independently associated with mortality. These findings were not due to an association of lipid concentrations with symptomatic ICH and may reflect differences in baseline comorbidities, nutritional state, or a protective effect of triglycerides and HDL-C on mortality following acute ischemic stroke.
Resumo:
Background Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. Conclusions Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.
Resumo:
A high dietary protein intake has been shown to blunt the deposition of intrahepatic lipids in high-fat- and high-carbohydrate-fed rodents and humans.
Resumo:
OBJECTIVE: To evaluate the isoflurane-sparing effects of lidocaine administered by constant rate infusion (CRI) during umbilical surgery in calves. STUDY DESIGN: Randomized 'blinded' prospective clinical study. ANIMALS: Thirty calves (mean 4.7 +/- SD 2.5 weeks old) undergoing umbilical surgery. METHODS: After premedication with xylazine (0.1 mg kg(-1) , IM), anaesthesia was induced with ketamine (4 mg kg(-1) , IV) and maintained with isoflurane in O(2) administered through a circle breathing system. The calves were assigned randomly to receive a bolus of 2 mg kg(-1) lidocaine IV after induction of anaesthesia, followed by CRI of 50 mug kg(-1) minute(-1) (group L, n=15) or a bolus and CRI of 0.9% sodium chloride (NaCl, group S, n=15). End-tidal isoflurane was adjusted to achieve adequate depth of anaesthesia. Heart rate, direct arterial blood pressure and body temperature were measured intraoperatively. Groups were compared by t- tests, anova or Mann-Whitney rank sum test as appropriate. RESULTS: The end-tidal concentration of isoflurane (median, IQR) was significantly lower in group L [1.0% (0.94-1.1)] compared to group S [1.2% (1.1-1.5)], indicating a 16.7% reduction in anaesthetic requirement during lidocaine CRI. Cardiopulmonary parameters and recovery times did not differ significantly between groups. CONCLUSION AND CLINICAL RELEVANCE: Lidocaine CRI may be used as a supplement to inhalation anaesthesia during umbilical surgery in calves in countries where such a protocol would be within the legal requirements for veterinary use in food animals. This study did not show any measurable benefit to the calves other than a reduction in isoflurane requirement.
Resumo:
Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.
Resumo:
Intramyocellular lipid (IMCL) variations in older men are poorly explored. In young adults, IMCL can be influenced by both diet and exercise interventions; this flexibility is related to aerobic fitness. We evaluated in active older adults the influence of maximal aerobic capacity on short-term diet and exercise-induced variations in IMCL stores.
Resumo:
Mastitic milk is associated with increased bovine protease activity, such as that from plasmin and somatic cell enzymes, which cause proteolysis of the caseins and may reduce cheese yield and quality. The aim of this work was to characterize the peptide profile resulting from proteolysis in a model mastitis system and to identify the proteases responsible. One quarter of each of 2 cows (A and B) was infused with lipoteichoic acid from Staphylococcus aureus. The somatic cell counts of the infused quarters reached a peak 6h after infusion, whereas plasmin activity of those quarters also increased, reaching a peak after 48 and 12h for cow A and B, respectively. Urea-polyacrylamide gel electrophoretograms of milk samples of cow A and B obtained at different time points after infusion and incubated for up to 7 d showed almost full hydrolysis of beta- and alpha(S1)-casein during incubation of milk samples at peak somatic cell counts, with that of beta-casein being faster than that of alpha(S1)-casein. Two-dimensional gel electrophoretograms of milk 6h after infusion with the toxin confirmed hydrolysis of beta- and alpha(S1)-casein and the appearance of lower-molecular-weight products. Peptides were subsequently separated by reversed-phase HPLC and handmade nanoscale C(18) columns, and identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. Twenty different peptides were identified and shown to originate from alpha(s1)- and beta-casein. Plasmin, cathepsin B and D, elastase, and amino- and carboxypeptidases were suggested as possible responsible proteases based on the peptide cleavage sites. The presumptive activity of amino- and carboxypeptidases is surprising and may indicate the activity of cathepsin H, which has not been reported in milk previously.