17 resultados para least common subgraph algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND AIMS The Barcelona Clinic Liver Cancer (BCLC) staging system is the algorithm most widely used to manage patients with hepatocellular carcinoma (HCC). We aimed to investigate the extent to which the BCLC recommendations effectively guide clinical practice and assess the reasons for any deviation from the recommendations. MATERIAL AND METHODS The first-line treatments assigned to patients included in the prospective Bern HCC cohort were analyzed. RESULTS Among 223 patients included in the cohort, 116 were not treated according to the BCLC algorithm. Eighty percent of the patients in BCLC stage 0 (very early HCC) and 60% of the patients in BCLC stage A (early HCC) received recommended curative treatment. Only 29% of the BCLC stage B patients (intermediate HCC) and 33% of the BCLC stage C patients (advanced HCC) were treated according to the algorithm. Eighty-nine percent of the BCLC stage D patients (terminal HCC) were treated with best supportive care, as recommended. In 98 patients (44%) the performance status was disregarded in the stage assignment. CONCLUSION The management of HCC in clinical practice frequently deviates from the BCLC recommendations. Most of the curative therapy options, which have well-defined selection criteria, were allocated according to the recommendations, while the majority of the palliative therapy options were assigned to patients with tumor stages not aligned with the recommendations. The only parameter which is subjective in the algorithm, the performance status, is also the least respected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many attempts have already been made to detect exomoons around transiting exoplanets, but the first confirmed discovery is still pending. The experiences that have been gathered so far allow us to better optimize future space telescopes for this challenge already during the development phase. In this paper we focus on the forthcoming CHaraterising ExOPlanet Satellite (CHEOPS), describing an optimized decision algorithm with step-by-step evaluation, and calculating the number of required transits for an exomoon detection for various planet moon configurations that can be observable by CHEOPS. We explore the most efficient way for such an observation to minimize the cost in observing time. Our study is based on PTV observations (photocentric transit timing variation) in simulated CHEOPS data, but the recipe does not depend on the actual detection method, and it can be substituted with, e.g., the photodynamical method for later applications. Using the current state-of-the-art level simulation of CHEOPS data we analyzed transit observation sets for different star planet moon configurations and performed a bootstrap analysis to determine their detection statistics. We have found that the detection limit is around an Earth-sized moon. In the case of favorable spatial configurations, systems with at least a large moon and a Neptune-sized planet, an 80% detection chance requires at least 5-6 transit observations on average. There is also a nonzero chance in the case of smaller moons, but the detection statistics deteriorate rapidly, while the necessary transit measurements increase quickly. After the CoRoT and Kepler spacecrafts, CHEOPS will be the next dedicated space telescope that will observe exoplanetary transits and characterize systems with known Doppler-planets. Although it has a smaller aperture than Kepler (the ratio of the mirror diameters is about 1/3) and is mounted with a CCD that is similar to Kepler's, it will observe brighter stars and operate with larger sampling rate; therefore, the detection limit for an exomoon can be the same as or better, which will make CHEOPS a competitive instruments in the quest for exomoons.