70 resultados para interactive discourse acts
Towards optimal treatment with growth hormone in short children and adolescents: evidence and theses
Resumo:
Treatment with growth hormone (GH) has become standard practice for replacement in GH-deficient children or pharmacotherapy in a variety of disorders with short stature. However, even today, the reported adult heights achieved often remain below the normal range. In addition, the treatment is expensive and may be associated with long-term risks. Thus, a discussion of the factors relevant for achieving an optimal individual outcome in terms of growth, costs, and risks is required. In the present review, the heterogenous approaches of treatment with GH are discussed, considering the parameters available for an evaluation of the short- and long-term outcomes at different stages of treatment. This discourse introduces the potential of the newly emerging prediction algorithms in comparison to other more conventional approaches for the planning and evaluation of the response to GH. In rare disorders such as those with short stature, treatment decisions cannot easily be deduced from personal experience. An interactive approach utilizing the derived experience from large cohorts for the evaluation of the individual patient and the required decision-making may facilitate the use of GH. Such an approach should also lead to avoiding unnecessary long-term treatment in unresponsive individuals.
Resumo:
Sphingosylphosphorylcholine (SPC) is a bioactive lipid that binds to G protein-coupled-receptors and activates various signaling cascades. Here, we show that in renal mesangial cells, SPC not only activates various protein kinase cascades but also activates Smad proteins, which are classical members of the transforming growth factor-beta (TGFbeta) signaling pathway. Consequently, SPC is able to mimic TGFbeta-mediated cell responses, such as an anti-inflammatory and a profibrotic response. Interleukin-1beta-stimulated prostaglandin E(2) formation is dose-dependently suppressed by SPC, which is paralleled by reduced secretory phospholipase A(2) (sPLA(2)) protein expression and activity. This effect is due to a reduction of sPLA(2) mRNA expression caused by inhibited sPLA(2) promoter activity. Furthermore, SPC upregulates the profibrotic connective tissue growth factor (CTGF) protein and mRNA expression. Blocking TGFbeta signaling by a TGFbeta receptor kinase inhibitor causes an inhibition of SPC-stimulated Smad activation and reverses both the negative effect of SPC on sPLA(2) expression and the positive effect on CTGF expression. In summary, our data show that SPC, by mimicking TGFbeta, leads to a suppression of proinflammatory mediator production and stimulates a profibrotic cell response that is often the end point of an anti-inflammatory reaction. Thus, targeting SPC receptors may represent a novel therapeutic strategy to cope with inflammatory diseases.
Resumo:
Vancomycin and gentamicin act synergistically against penicillin-resistant pneumococci in vitro and in experimental rabbit meningitis. The aim of the present study was to investigate the underlying mechanism of this synergism. The intracellular concentration of gentamicin was measured by using the following experimental setting. Bacterial cultures were incubated with either gentamicin alone or gentamicin plus vancomycin for a short period (15 min). The gentamicin concentration was determined before and after grinding of the cultures by using the COBAS INTEGRA fluorescence polarization system (Roche). The grinding efficacies ranged between 44 and 54%, as determined by viable cell counts. In the combination regimen the intracellular concentration of gentamicin increased to 186% compared to that achieved with gentamicin monotherapy. These data suggest that the synergy observed in vivo and in vitro is based on an increased intracellular penetration of the aminoglycoside, probably due to the effect of vancomycin on the permeability of the cell wall.
Resumo:
BACKGROUND: Activation of endothelial cells (EC) in xenotransplantation is mostly induced through binding of antibodies (Ab) and activation of the complement system. Activated EC lose their heparan sulfate proteoglycan (HSPG) layer and exhibit a procoagulant and pro-inflammatory cell surface. We have recently shown that the semi-synthetic proteoglycan analog dextran sulfate (DXS, MW 5000) blocks activation of the complement cascade and acts as an EC-protectant both in vitro and in vivo. However, DXS is a strong anticoagulant and systemic use of this substance in a clinical setting might therefore be compromised. It was the aim of this study to investigate a novel, fully synthetic EC-protectant with reduced inhibition of the coagulation system. METHOD: By screening with standard complement (CH50) and coagulation assays (activated partial thromboplastin time, aPTT), a conjugate of tyrosine sulfate to a polymer-backbone (sTyr-PAA) was identified as a candidate EC-protectant. The pathway-specificity of complement inhibition by sTyr-PAA was tested in hemolytic assays. To further characterize the substance, the effects of sTyr-PAA and DXS on complement deposition on pig cells were compared by flow cytometry and cytotoxicity assays. Using fluorescein-labeled sTyr-PAA (sTyr-PAA-Fluo), the binding of sTyr-PAA to cell surfaces was also investigated. RESULTS: Of all tested compounds, sTyr-PAA was the most effective substance in inhibiting all three pathways of complement activation. Its capacity to inhibit the coagulation cascade was significantly reduced as compared with DXS. sTyr-PAA also dose-dependently inhibited deposition of human complement on pig cells and this inhibition correlated with the binding of sTyr-PAA to the cells. Moreover, we were able to demonstrate that sTyr-PAA binds preferentially and dose-dependently to damaged EC. CONCLUSIONS: We could show that sTyr-PAA acts as an EC-protectant by binding to the cells and protecting them from complement-mediated damage. It has less effect on the coagulation system than DXS and may therefore have potential for in vivo application.