22 resultados para hydraulic system behaviour
Resumo:
In order to investigate stress responses of horses in walkers with and without electricity, 12 horses were trained during 3 weeks in a horse walker with and without the use of electricity (3.7 kV). To evaluate the stress response, cortisol levels in the blood were measured, the heart rate was monitored using the Polar® system and the behaviour was evaluated. Neither the cortisol levels nor the heart rates showed any relevant statistically significant difference between horses moved in the horse walker with or without the use of electricity. The highest cortisol levels and heart rates were recorded during the first week (habituation period). A significant difference could be observed regarding spontaneous compartment changes: while this happened mainly during the first week and before the first use of electricity, no horses changed compartments in the periods when electricity was used and thereafter. The results of this study indicate that the use of electricity in the horse walker does not seem to cause significant detectable stress in the horses.
Resumo:
We aimed to investigate whether aberrant motor behavior in schizophrenia was associated with structural alterations in the motor system. Whole brain voxel based morphometry of patients with different severity of motor symptoms identified altered gray matter volume in the supplementary motor area (SMA), a key region of the motor system.
Resumo:
A regional hydrogeochemical model was developed to evaluate the geochemical evolution of different groundwaters in an alluvial aquifer system in the Interior of Oman. In combination with environmental isotopes the model is able to extract qualitative and quantitative information about recharge, groundwater flow paths and hydraulic connections between different aquifers. The main source of water to the alluvial aquifer along the flow paths ofWadi Abyadh andWadi M’uaydin in the piedmont is groundwater from the high-altitude areas of the Jabal Akhdar and local infiltration along the wadi channels. In contrast, the piedmont alluvial aquifer alongWadi Halfayn is primarily replenished by lateral recharge from the ophiolite foothills to the east besides smaller contributions from the Jabal Akhdar and local infiltration. Further down gradient in the Southern Alluvial Plain aquifer a significant source of recharge is direct infiltration of rain and surface runoff, originating from a moisture source that approaches Oman from the south. The model shows that the main geochemical evolution of the alluvial groundwaters occurs along the flow path from the piedmont to the Southern Alluvial Plain, where dedolomitization is responsible for the observed changes in the chemical and carbon isotope composition in these waters.
Resumo:
Many insect herbivores feed on belowground plant tissues. In this chapter, we discuss how they have adapted to deal with root primary and secondary metabolites. It is becoming evident that root herbivores can use root volatiles and exudates for host location and foraging. Their complex sensory apparatus suggests a sophisticated recognition and signal transduction system. Furthermore, endogenous metabolites trigger attractive or repellent responses in root feeders, indicating that they may specifically fine-tune food uptake to meet their dietary needs. Little evidence for direct toxic effects of root secondary metabolites has accumulated so far, indicating high prevalence of tolerance mechanisms. Root herbivores furthermore facilitate the entry of soil microbes into the roots, which may influence root nutritional quality. Investigating the role of plant metabolites in an ecologically and physiologically relevant context will be crucial to refine our current models on root-herbivore physiology and behaviour in the future.
Resumo:
Experience is lacking with mineral scaling and corrosion in enhanced geothermal systems (EGS) in which surface water is circulated through hydraulically stimulated crystalline rocks. As an aid in designing EGS projects we have conducted multicomponent reactive-transport simulations to predict the likely characteristics of scales and corrosion that may form when exploiting heat from granitoid reservoir rocks at ∼200 °C and 5 km depth. The specifications of an EGS project at Basel, Switzerland, are used to constrain the model. The main water–rock reactions in the reservoir during hydraulic stimulation and the subsequent doublet operation were identified in a separate paper (Alt-Epping et al., 2013b). Here we use the computed composition of the reservoir fluid to (1) predict mineral scaling in the injection and production wells, (2) evaluate methods of chemical geothermometry and (3) identify geochemical indicators of incipient corrosion. The envisaged heat extraction scheme ensures that even if the reservoir fluid is in equilibrium with quartz, cooling of the fluid will not induce saturation with respect to amorphous silica, thus eliminating the risk of silica scaling. However, the ascending fluid attains saturation with respect to crystalline aluminosilicates such as albite, microcline and chlorite, and possibly with respect to amorphous aluminosilicates. If no silica-bearing minerals precipitate upon ascent, reservoir temperatures can be predicted by classical formulations of silica geothermometry. In contrast, Na/K concentration ratios in the production fluid reflect steady-state conditions in the reservoir rather than albite–microcline equilibrium. Thus, even though igneous orthoclase is abundant in the reservoir and albite precipitates as a secondary phase, Na/K geothermometers fail to yield accurate temperatures. Anhydrite, which is present in fractures in the Basel reservoir, is predicted to dissolve during operation. This may lead to precipitation of pyrite and, at high exposure of anhydrite to the circulating fluid, of hematite scaling in the geothermal installation. In general, incipient corrosion of the casing can be detected at the production wellhead through an increase in H2(aq) and the enhanced precipitation of Fe-bearing aluminosilicates. The appearance of magnetite in scales indicates high corrosion rates.
Resumo:
Trace element behavior during hydrous melting of a metasomatized garnet–peridotite was examined at pressures of 4–6 GPa and temperatures of 1000 °C–1200 °C, conditions appropriate for fluid penetrating the mantle wedge atop the subducting slab. Experiments were performed in a rocking multi-anvil apparatus using a diamond-trap setup. The compositions of the fluid and melt phases were measured using the cryogenic LA-ICP-MS technique. The water-saturated solidus of the K-lherzolite composition is located between 900 °C and 1000 °C at 4 GPa and between 1000 °C and 1100 °C at 5 and 6 GPa. The partition coefficients between fluid or melt and clinopyroxene reveal an asymmetric MREE trough with a minimum at Dy. The clinopyroxene in equilibrium with aqueous fluids is characterized by DUfluid–cpx > DThfluid–cpx while DUmelt–cpx tends to be similar to DThmelt–cpx. The partition coefficients between fluid or melt and garnet reveal very strong light to heavy REE fractionation, DLa/DLu from 95 (hydrous melt) to 1600 (aqueous fluid). The LILE are highly incompatible with partition coefficients > 50. The behavior of HFSE are decoupled, with DZr,Hf close to 1 while DNb,Ta > 10. Garnet is characterized by DUmelt/fluid–garnet < DThmelt/fluid–garnet. A comparison of our experimental partitioning results for trivalent cations as well as the results from the literature and the calculations carried out using the lattice strain model adapted to the presence of water in the bulk system indicates that H2O in the fluid or melt phase has a prominent effect on trace element partitioning. Garnet in mantle rocks in equilibrium with an aqueous fluid is characterized by significantly higher Do(3 +) for REE in the X site of the garnet compared with the partitioning values of the optimal cation in garnet in equilibrium with hydrous melts. Our data show for the first time that the change in the nature of the mobile phase (fluid vs. melt) does affect the affinities of trace elements into the garnet crystal at conditions below the second critical endpoint of the system. The same also applies for clinopyroxene, although this is less clear. Consequently, our new data allow for refinements in predictive modeling of element transfer from the slab to the mantle wedge and of possible compositions of metasomatized mantle that sources OIB magmatism.
Resumo:
Laying hens in loose-housing systems select a nest daily in which to lay their eggs among many identical looking nests, they often prefer corner nests. We investigated whether heterogeneity in nest curtain appearance – via colours and symbols – would influence nest selection and result in an even distribution of eggs among nests. We studied pre-laying behaviour in groups of 30 LSL hens across two consecutive trials with eight groups per trial. Half of the groups had access to six identical rollaway group-nests, while the others had access to six nests of the same type differing in outer appearance. Three colours (red, green, yellow) and three black symbols (cross, circle, rectangle) were used to create three different nest curtain designs per pen. Nest position and the side of entrance to the pens were changed at 28 and 30 weeks of age, respectively, whereby the order of changes was counterbalanced across trials. Nest positions were numbered 1–6, with nest position 1 representing the nest closest to the pen entrance. Eggs were counted per nest daily from week of age 18 to 33. Nest visits were recorded individually with an RFID system for the first 5 h of light throughout weeks 24–33. Hens with access to nests differing in curtain appearance entered fewer nests daily than hens with identical nests throughout the study but both groups entered more nests with increasing age. We found no other evidence that curtain appearance affected nest choice and hens were inconsistent in their daily nest selection. A high proportion of eggs were laid in corner nests especially during the first three weeks of lay. The number of visits per egg depended upon nest position and age: it increased with age and was higher after the nest position change than before in nest position 1, whereas it stayed stable over time in nest position 6. At 24 weeks of age, gregarious nest visits (hens visiting an occupied nest when there was at least one unoccupied nest) and solitary nest visits (hens visiting an unoccupied nest when there was at least one occupied nest) accounted for a similar amount of nest visits, however, after the door switch, gregarious nest visits made up more than half of all nest visits, while the number of solitary nest visits had decreased. The visual cues were too subtle or inadequate for hens to develop individual preferences while nest position, entrance side, age and nest occupancy affected the quantity and type of nest visits.