27 resultados para humerus
[The AO/ASIF Flexnail : A flexible intramedullary nail for the treatment of humeral shaft fractures]
Resumo:
BACKGROUND: The use of conventional implants for intramedullary nailing of humeral shaft fractures is associated with specific difficulties. During antegrade implantation structures of the rotator cuff can be affected leading to a reduced functional result of the shoulder. If the nail is implanted in a retrograde manner problems arise due to a relatively large hole close to or within the olecranon fossa, which is necessary for insertion of the nail. Supracondylar fractures as well as persistent elbow pain and loss of function are reported in the literature. To overcome these disadvantages a flexible nail has been developed that can be stiffened and locked after implantation. METHOD: Between October 2000 and February 2002, 34 patients were treated with the flexible nail at our institution; 29 were available for follow-up. Fracture healing was documented on radiographs and clinical outcome was evaluated with use of the Constant as well as the Kwasny score. RESULTS: Median duration until fracture consolidation was 10 weeks. In two patients fracture union was not achieved within the follow-up period. The median outcome measured with the Constant score was 93 points and 2.5 with the Kwasny score. Both values correspond to a very good functional outcome. CONCLUSION: We conclude that the flexible humeral nail is an excellent treatment option for humeral shaft fractures. Damage to the rotator cuff and the distal humerus can be avoided due to its unique flexible construction, improving the functional outcome of intramedullary nailing for the treatment of humeral shaft fractures.
Resumo:
OBJECTIVE: The stability of 2 fixation techniques for the tuberosities in patients with 3- or 4-part proximal humerus fractures treated with hemiarthroplasties was compared. DESIGN: Retrospective review of a nonrandomized sequential series of patients. SETTING: Level I university orthopaedic surgery department. PATIENTS: A consecutive series of 58 patients (average age, 64 years) from 1990 to 1999 with 3- and 4-part fractures of the proximal humerus. INTERVENTION: In group 1, 31 patients were treated with either a Neer or Aequalis shoulder prosthesis using nonabsorbable sutures and no bone graft for the reattachment of the tuberosities. In group 2, 27 patients were treated with either an Aequalis or Epoca shoulder prosthesis and a combination of cable fixation and bone grafting. MAIN OUTCOME MEASUREMENTS: At follow-up (average, 32 months), radiographs were taken to confirm tuberosity fixation or degree of displacement or resorption. Functional outcome was assessed by the Constant-Murley Score. RESULTS: Significantly more dislocated tuberosities were found radiographically in group 1 (10 of 13 in total, P = 0.011), and significantly more tuberosities were resorbed in group 1 (9 of 12 in total, P = 0.012). Significant differences in functional results among healed versus failed tuberosity fixation were observed for activity of daily living (P = 0.05), range of motion (P = 0.002), strength (P = 0.01), the total score (P = 0.008), and the passive rotation amplitude (P = 0.04). CONCLUSION: In hemiarthroplasties for proximal humeral fractures, the reattachment of the tuberosities with cable wire and bone grafting gives consistently better radiographic and functional results than with suture fixation alone.
Resumo:
BACKGROUND: Percutaneous Kirschner wire fixation represents the classic treatment for displaced supracondylar humeral fractures in childhood. This type of treatment first requires satisfactory reduction of the fracture. Failure to achieve a satisfactory reduction or inadequate stabilization can result in instability of the fracture fragments, which can result in either an unsatisfactory cosmetic or functional outcome. In our experience, these problems can be overcome with the use of a small lateral external fixator. METHODS: Between 1999 and 2005, thirty-one of 170 Gartland type-III supracondylar humeral fractures were treated with a lateral external fixator. The outcome of treatment was analyzed with regard to limb alignment, elbow movement, cosmetic appearance, and patient satisfaction. RESULTS: In twenty-eight of the thirty-one patients, a satisfactory reduction was achieved with closed methods. All children except one had a normal or good range of movement. The cosmetic result was excellent in all cases. All of the children and their parents stated that they would choose this treatment again. CONCLUSIONS: The use of a small lateral external fixator seems to be a safe alternative for the treatment of displaced supracondylar fractures of the humerus when a closed reduction appears to be unattainable by means of manipulation alone or when sufficient stability is not achieved with standard methods of Kirschner wire fixation.
Resumo:
SUMMARY: Remaining lifetime and absolute 10-year probabilities for osteoporotic fractures were determined by gender, age, and BMD values. Remaining lifetime probability at age 50 years was 20.2% in men and 51.3% in women and increased with advancing age and decreasing BMD. The study validates the elements required to populate a Swiss-specific FRAX model. INTRODUCTION: Switzerland belongs to high-risk countries for osteoporosis. Based on demographic projections, burden will still increase. We assessed remaining lifetime and absolute 10-year probabilities for osteoporotic fractures by gender, age and BMD in order to populate FRAX algorithm for Switzerland. METHODS: Osteoporotic fracture incidence was determined from national epidemiological data for hospitalised fractured patients from the Swiss Federal Office of Statistics in 2000 and results of a prospective Swiss cohort with almost 5,000 fractured patients in 2006. Validated BMD-associated fracture risk was used together with national death incidence and risk tables to determine remaining lifetime and absolute 10-year fracture probabilities for hip and major osteoporotic (hip, spine, distal radius, proximal humerus) fractures. RESULTS: Major osteoporotic fractures incidence was 773 and 2,078 per 100,000 men and women aged 50 and older. Corresponding remaining lifetime probabilities at age 50 were 20.2% and 51.3%. Hospitalisation for clinical spine, distal radius, and proximal humerus fractures reached 25%, 30% and 50%, respectively. Absolute 10-year probability of osteoporotic fracture increased with advancing age and decreasing BMD and was higher in women than in men. CONCLUSION: This study validates the elements required to populate a Swiss-specific FRAX model, a country at highest risk for osteoporotic fractures.
Resumo:
Bone strength benefits after long-term retirement from elite gymnastics in terms of bone geometry and volumetric BMD were studied by comparing retired female gymnasts to moderately active age-matched women. In a cross-sectional study, 30 retired female gymnasts were compared with 30 age-matched moderately active controls. Bone geometric and densitometric parameters were measured by pQCT at the distal epiphyses and shafts of the tibia, femur, radius, and humerus. Muscle cross-sectional areas were assessed from the shaft scans. Independent t-tests were conducted on bone and muscle variables to detect differences between the two groups. The gymnasts had retired for a mean of 6.1 +/- 0.4 yr and were engaged in
Resumo:
Rehabilitation robots have become important tools in stroke rehabilitation. Compared to manual arm training, robot-supported training can be more intensive, of longer duration and more repetitive. Therefore, robots have the potential to improve the rehabilitation process in stroke patients. Whereas a majority of previous work in upper limb rehabilitation robotics has focused on end-effector-based robots, a shift towards exoskeleton robots is taking place because they offer a better guidance of the human arm, especially for movements with a large range of motion. However, the implementation of an exoskeleton device introduces the challenge of reproducing the motion of the human shoulder, which is one of the most complex joints of the body. Thus, this paper starts with describing a simplified model of the human shoulder. On the basis of that model, a new ergonomic shoulder actuation principle that provides motion of the humerus head is proposed, and its implementation in the ARMin III arm therapy robot is described. The focus lies on the mechanics and actuation principle. The ARMin III robot provides three actuated degrees of freedom for the shoulder and one for the elbow joint. An additional module provides actuated lower arm pro/supination and wrist flexion/extension. Five ARMin III devices have been manufactured and they are currently undergoing clinical evaluation in hospitals in Switzerland and in the United States.
Resumo:
Operationsziel Geschlossene, anatomische Reposition und sichere Fixation von problematischen suprakondylären Typ-III- und Typ-IV-Humerusfrakturen, die mit den herkömmlichen Operationsmethoden nur schwierig geschlossen zu behandeln sind. Indikationen Gemäß der AO-Kinderklassifikation der suprakondylären Humerusfrakturen vom Typ III und IV: Frakturen, welche nicht geschlossen mittels üblicher Repositionsmethoden reponierbar sind sowie Frakturen, die nicht mittels der üblichen, gekreuzten perkutanen Kirschner-Draht-Technik zu fixieren sind. Bei schweren Schwellungszuständen, offener Fraktur oder initial neurologischen und/oder vaskulären Problemen („pulseless pink hand“) sowie bei mehrfachverletzten Kindern, welche eine optimale Rehabilitation benötigen und die Extremität gipsfrei sein sollte. Bei Kindern mit Komorbiditäten (z. B. Anfälle, Spastizität), die eine bessere Stabilität benötigen. Kontraindikationen Prinzipiell keine Kontraindikationen Operationstechnik Im nichtreponierten Zustand unter Durchleuchtungskontrolle Einbringen einer einzelnen Schanz-Schraube in den lateralen (radialen) Aspekt des distalen Fragments, welches sich in der streng seitlichen Röntgenprojektion als „Sand-Uhr“- bzw. Kreisform des Capitulum humeri darstellt. Je nach Größe dieses distalen Fragments kann die Schanz-Schraube rein epiphysär oder metaphysär liegen. Danach in absolut streng seitlicher Projektion des distalen Humerus im Bereich des meta-diaphysären Übergangs Einbohren einer 2. Schanz-Schraube unabhängig von der Ersten, die möglichst rechtwinklig zur Längsachse des Humerus in der a.-p.-Ebene zu liegen kommen sollte, um spätere Manipulationen mittels „Joy-Stick“-Technik zu erleichtern. Sind die beiden Schanz-Schrauben mehr oder weniger in beiden Ebenen parallel, so ist die Fraktur praktisch anatomisch reponiert. Nach erreichter Reposition Feinjustierung aller Achskomponenten. Sicherung der Flexion/Extension mittels einem von radial, distal eingebrachten sog. Anti-Rotations-Kirschner-Drahts, der die Stabilität signifikant erhöht und eine Drehung des distalen Fragments um die einzelne Schanz-Schraube verhindert. Postoperative Behandlung Keine zusätzliche Gipsruhigstellung notwendig. Es sollte eine funktionelle Nachbehandlung erfolgen. Ergebnisse Gemäß unserer Langzeitstudien bewegen die meisten Kinder bereits zum Zeitpunkt der ambulanten Pin-Entfernung in der Frakturambulanz ihren Ellbogen weitgehend normal. Bei einer Follow-up-Zeit über 40 Monate hatten 30/31 Kindern eine seitengleiche Achse und Beweglichkeit.
Resumo:
Reduced bone stock can result in fractures that mostly occur in the spine, distal radius, and proximal femur. In case of operative treatment, osteoporosis is associated with an increased failure rate. To estimate implant anchorage, mechanical methods seem to be promising to measure bone strength intraoperatively. It has been shown that the mechanical peak torque correlates with the local bone mineral density and screw failure load in hip, hindfoot, humerus, and spine in vitro. One device to measure mechanical peak torque is the DensiProbe (AO Research Institute, Davos, Switzerland). The device has shown its effectiveness in mechanical peak torque measurement in mechanical testing setups for the use in hip, hindfoot, and spine. In all studies, the correlation of mechanical torque measurement and local bone mineral density and screw failure load could be shown. It allows the surgeon to judge local bone strength intraoperatively directly at the region of interest and gives valuable information if additional augmentation is needed. We summarize methods of this new technique, its advantages and limitations, and give an overview of actual and possible future applications.
Resumo:
BACKGROUND Children and adolescents are at high risk of sustaining fractures during growth. Therefore, epidemiological assessment is crucial for fracture prevention. The AO Comprehensive Injury Automatic Classifier (AO COIAC) was used to evaluate epidemiological data of pediatric long bone fractures in a large cohort. METHODS Data from children and adolescents with long bone fractures sustained between 2009 and 2011, treated at either of two tertiary pediatric surgery hospitals in Switzerland, were retrospectively collected. Fractures were classified according to the AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF). RESULTS For a total of 2716 patients (60% boys), 2807 accidents with 2840 long bone fractures (59% radius/ulna; 21% humerus; 15% tibia/fibula; 5% femur) were documented. Children's mean age (SD) was 8.2 (4.0) years (6% infants; 26% preschool children; 40% school children; 28% adolescents). Adolescent boys sustained more fractures than girls (p < 0.001). The leading cause of fractures was falls (27%), followed by accidents occurring during leisure activities (25%), at home (14%), on playgrounds (11%), and traffic (11%) and school accidents (8%). There was boy predominance for all accident types except for playground and at home accidents. The distribution of accident types differed according to age classes (p < 0.001). Twenty-six percent of patients were classed as overweight or obese - higher than data published by the WHO for the corresponding ages - with a higher proportion of overweight and obese boys than in the Swiss population (p < 0.0001). CONCLUSION Overall, differences in the fracture distribution were sex and age related. Overweight and obese patients seemed to be at increased risk of sustaining fractures. Our data give valuable input into future development of prevention strategies. The AO PCCF proved to be useful in epidemiological reporting and analysis of pediatric long bone fractures.
Resumo:
Fractures of the growing bone require fixation techniques, which preclude any injury to the growth plate regions. This requirement is met by Elastic Stable Intramedullary Nails (ESIN) which are positioned between both metaphyseal regions. Pronounced malposition and/or shortening, open fractures and fractures with impending skin perforation are indications for clavicle nailing in adolescents. Retrograde nailing with two elastic nails, inserted from lateral, is the method of choice for stabilization of humerus fractures. In radial neck fractures with severe tilting of the radial head, a retrograde nail may reduce and fix the head. In Monteggia lesions, the ulna fracture is reduced and fixed with an antegrade nail. Forearm fractures with unacceptable axial deviation are reduced and fixed with one antegrade nail in the ulna and a retrograde nail in the radius. Ascending elastic nailing is done for femur shaft and proximal femur fractures. The medial and lateral entry sites are located above the distal physis. End caps are used to prevent shortening in spiral and multiple segment fractures. Fractures of the distal third of the femur are nailed in a descending technique. The entry sites of two nails are located on the lateral cortex below the greater trochanter. Combined tibia and fibula fractures, open fractures and unstable fracture types such as spiral and multifragmental tibia fractures are good indications for ESIN. Descending nailing is the method of choice. The nail entry points are medially and laterally distal to the apophysis of the proximal tibia. Thorough knowledge of each fracture type, fracture location and age specific healing pattern is necessary for safe and effective treatment of pediatric fractures
Resumo:
OBJECTIVE Precise adaptable fixation of a supracondylar humerus osteotomy with a radial/lateral external fixator to correct posttraumatic cubitus varus. INDICATIONS Acquired, posttraumatic cubitus varus as a result of a malhealed and unsatisfactorily treated supracondylar humerus fracture. Idiopathic, congenital cubitus varus (very seldom) if the child (independent of age and after complete healing) is cosmetically impaired; stability of the elbow is reduced due to malalignment (hyperextension); secondary problems and pain (e. g., irritation of the ulnar nerve) are expected or already exist; or there is an explicit wish of the child/parents (relative indication). CONTRAINDICATIONS In principle there are no contraindications provided that the indication criteria are filled. The common argument of age does not represent a contraindication in our opinion, since angular remodeling at the distal end of the humerus is practically nonexistent. SURGICAL TECHNIQUE Basically, the surgical technique of the radial external fixator is used as previously described for stabilization of complex supracondylar humeral fractures. With the patient in supine position, the arm is placed freely on an arm table. Using a 4-5 cm long skin incision along the radial, supracondylar, the extracapsular part of the distal humerus is prepared, whereby great caution regarding the radial nerve is advised. In contrast to the procedure used in radial external fixation for supracondylar humeral fracture treatment, two Schanz screws are always fixed in each fragment at a distance of 1.5-2 cm. The osteotomy must allow the fragment to freely move in all directions. The proximal and distal two Schanz screws are then connected with short 4 mm carbon or stainless steel rods. These two rods are connected with each other over another rod using the tub-to-tub technique. Now the preliminary correction according the clinical situation can be performed and the clamps are tightened. Anatomical axis and function are checked. If these are radiologically and clinically perfect, all clamps are definitively tightened; if the alignment or the function is not perfect, then further adjustments can be made. POSTOPERATIVE MANAGEMENT Due to the excellent stability, further immobilization not necessary. Immediate functional follow-up treatment performed according to pain. RESULTS Adequate healing is usually expected within 6 weeks. At this time the external fixator can be removed in the fracture clinic. Because the whole operation is performed in an extraarticular manner and the mobility of the elbow is not affected, deterioration of function has never been observed. Also regarding the cosmetic/anatomical situation, good results are expected because they were already achieved intraoperatively.
Resumo:
BACKGROUND Trans-olecranon chevron osteotomies (COs) remain the gold standard surgical approach to type C fractures of the distal humerus. This technique is associated with a high complication rate and development of an extra-articular olecranon osteotomy may be advantageous. The aim of this study was to compare the load to failure of COs with extra-articular oblique osteotomies (OOs) as well as modified, extra-articular step osteotomies (SOs). METHODS These three osteotomies and their subsequent fixation utilizing a standardized tension band wiring technique were tested in 42 composite analog ulnae models at 20° and 70° of flexion. Triceps loading was simulated with a servo hydraulic testing machine. All specimens were isometrically loaded until failure. Kinematic and force data, as well as interfragmentary motion were recorded. RESULTS At 70°, CO failed at a mean load of 963N (SD 104N), the OO at 1512N (SD 208N) and the SO at 1484N (SD 153N), (P<0.001). At 20°, CO failed at a mean load of 707N (SD 104N) and OO at 1009N (SD 85N) (P=0.006). The highest load to failure was observed for the SO, which was 1277N (SD 172N). The load to failure of the SO was significantly higher than the CO as well as the OO. CONCLUSION Extra-articular osteotomies showed a significantly higher load to failure in comparison to traditional CO. At near full extension (20° of flexion), this biomechanical advantage was further enhanced by a step-cut modification of the extra-articular oblique osteotomy.