97 resultados para high temporal resolution
Resumo:
Ex vivo porcine retina laser lesions applied with varying laser power (20 mW–2 W, 10 ms pulse, 196 lesions) are manually evaluated by microscopic and optical coherence tomography (OCT) visibility, as well as in histological sections immediately after the deposition of the laser energy. An optical coherence tomography system with 1.78 um axial resolution specifically developed to image thin retinal layers simultaneously to laser therapy is presented, and visibility thresholds of the laser lesions in OCT data and fundus imaging are compared. Optical coherence tomography scans are compared with histological sections to estimate the resolving power for small optical changes in the retinal layers, and real-time time-lapse scans during laser application are shown and analyzed quantitatively. Ultrahigh-resolution OCT inspection features a lesion visibility threshold 40–50 mW (17 reduction) lower than for visual inspection. With the new measurement system, 42 of the lesions that were invisible using state-of-the-art ophthalmoscopic methods could be detected.
Resumo:
Laser ablation/ionisation mass spectrometry with a vertical resolution at a nanometre scale was applied for the quantitative characterisation of the chemical composition of additive-assisted Cu electroplated deposits used in the microchip industry. The detailed chemical analysis complements information gathered by optical techniques and allows new insights into the metal deposition process.
Resumo:
A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.
Resumo:
The coupling relationships between hillslope and channel network are fundamental for the understanding of mountainous landscapes' evolution. Here, we applied dendrogeomorphic methods to identify the hillslope–channel relationship and the sediment transfer dynamics within an alpine catchment, at the highest possible resolution. The Schimbrig catchment is located in the central Swiss Alps and can be divided into two distinct geomorphic sectors. To the east, the Schimbrig earth flow is the largest sediment source of the basin, while to the west, the Rossloch channel network is affected by numerous shallow landslides responsible for the supply of sediment from hillslopes to channels. To understand the connectivity between hillslopes and channels and between sources and sink, trees were sampled along the main Rossloch stream, on the Schimbrig earth flow and on the Rossloch depositional area. Geomorphic observations and dendrogeomophic results indicate different mechanisms of sediment production, transfer and deposition between upper and lower segments of the channel network. In the source areas (upper part of the Rossloch channel system), sediment is delivered to the channel network through slow movements of the ground, typical of earth flow, shallow landslides and soil creep. Contrariwise, in the depositional area (lower part of the channel network), the mechanisms of sediment transfer are mainly due to torrential activity, floods and debris flows. Tree analysis allowed the reconstruction of periods of high activity during the last century for the entire catchment. The collected dataset presents a very high temporal resolution but we encountered some limitations in establishing the source-to-sink connectivity at the catchment-wide scale. Despite these uncertainties, for decennial timescales the results suggest a direct coupling between hillslopes and neighbouring channels in the Rossloch channel network, and a de-coupling between sediment sources and sink farther downstream, with connections possible only during extraordinary events.
Resumo:
The important active and passive role of mineral dust aerosol in the climate and the global carbon cycle over the last glacial/interglacial cycles has been recognized. However, little data on the most important aeolian dust-derived biological micronutrient, iron (Fe), has so far been available from ice-cores from Greenland or Antarctica. Furthermore, Fe deposition reconstructions derived from the palaeoproxies particulate dust and calcium differ significantly from the Fe flux data available. The ability to measure high temporal resolution Fe data in polar ice-cores is crucial for the study of the timing and magnitude of relationships between geochemical events and biological responses in the open ocean. This work adapts an existing flow injection analysis (FIA) methodology for low-level trace Fe determinations with an existing glaciochemical analysis system, continuous flow analysis (CFA) of ice-cores. Fe-induced oxidation of N,N′-dimethyl-p-pheylenediamine (DPD) is used to quantify the biologically more important and easily leachable Fe fraction released in a controlled digestion step at pH ∼1.0. The developed method was successfully applied to the determination of labile Fe in ice-core samples collected from the Antarctic Byrd ice-core and the Greenland Ice-Core Project (GRIP) ice-core.
Resumo:
Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) provide metabolic information on the musculoskeletal system, thus helping to understand the biochemical and pathophysiological nature of numerous diseases. In particular, MRS has been used to study the energy metabolism of muscular tissue since the very beginning of magnetic resonance examinations in humans when small-bore magnets for studies of the limbs became available. Even more than in other organs, the observation of non-proton-nuclei was important in muscle tissue. Spatial localization was less demanding in these studies, however, high temporal resolution was necessary to follow metabolism during exercise and recovery. The observation of high-energy phosphates during and after the application of workload gives insight into oxidative phosphorylation, a process that takes place in the mitochondria and characterizes impaired mitochondrial function. New applications in insulin-resistant patients followed the development of volume-selective 1H-MRS in whole-body magnets. Nowadays, multinuclear MRS and MRSI of the musculoskeletal system provide several windows to vital biochemical pathways noninvasively. It is shown how MRS and MRSI have been used in numerous diseases to characterize an involvement of the muscular metabolism.
Resumo:
Terrestrial records of past climatic conditions, such as lake sediments and speleothems, provide data of great importance for understanding environmental changes. However, unlike marine and ice core records, terrestrial palaeodata are often not available in databases or in a format that is easily accessible to the non-specialist. As a consequence, many excellent terrestrial records are unknown to the broader palaeoclimate community and are not included in compilations, comparisons, or modelling exercises. Here we present a compilation of Western European terrestrial palaeo-records covering, entirely or partially, the 60–8-ka INTIMATE time period. The compilation contains 56 natural archives, including lake records, speleothems, ice cores, and terrestrial proxies in marine records. The compilation is limited to include records of high temporal resolution and/or records that provide climate proxies or quantitative reconstructions of environmental parameters, such as temperature or precipitation, and that are of relevance and interest to a broader community. We briefly review the different types of terrestrial archives, their respective proxies, their interpretation and their application for palaeoclimatic reconstructions. We also discuss the importance of independent chronologies and the issue of record synchronization. The aim of this exercise is to provide the wider palaeo-community with a consistent compilation of high-quality terrestrial records, to facilitate model-data comparisons, and to identify key areas of interest for future investigations. We use the compilation to investigate Western European latitudinal climate gradients during the deglacial period and, despite of poorly constrained chronologies for the older records, we summarize the main results obtained from NW and SW European terrestrial records before the LGM.
Resumo:
The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit.
Resumo:
A total of 23 pollen diagrams [stored in the Alpine Palynological Data-Base (ALPADABA), Geobotanical Institute, Bern] cover the last 100 to over 1000 years. The sites include 15 lakes, seven mires, and one soil profile distributed in the Jura Mts (three sites), Swiss Plateau (two sites), northern Pre-Alps and Alps (six sites), central Alps (five sites), southern Alps (three sites), and southern Pre-Alps (four sites) in the western and southern part of Switzerland or just outside the national borders. The pollen diagrams have both a high taxonomic resolution and a high temporal resolution, with sampling distances of 0.5–3 cm, equivalent to 1 to 11 years for the last 100 years and 8 to 130 years for earlier periods. The chronology is based on absolute dating (14 sites: 210Pb 11 sites; 14C six sites; varve counting two sites) or on biostratigraphic correlation among pollen diagrams. The latter relies mainly on trends in Cannabis sativa, Ambrosia, Mercurialis annua, and Ostrya-type pollen. Individual pollen stratigraphies are discussed and sites are compared within each region. The principle of designating local, extra-local, and regional pollen signals and vegetation is exemplified by two pairs of sites lying close together. Trends in biostratigraphies shared by a major part of the pollen diagrams allow the following generalisations. Forest declined in phases since medieval times up to the late 19th century. Abies and Fagus declined consistently, whereas the behaviour of short-lived trees and trees of moist habitats differed among sites (Alnus glutinosa-type, Alnus viridis, Betula, Corylus avellana). In the present century, however, Picea and Pinus increased, followed by Fraxinus excelsior in the second half of this century. Grassland (traced by Gramineae and Plantago lanceolata-type pollen) increased, replacing much of the forest, and declined again in the second half of this century. Nitrate enrichment of the vegetation (traced by Urtica) took place in the first half of this century. These trends reflect the intensification of forest use and the expansion of grassland from medieval times up to the end of the last century, whereas subsequently parts of the grassland became used more intensively and the marginal parts were abandoned for forest regrowth. In most pollen diagrams human impact is the dominant factor in explaining inferred changes in vegetation, but climatic change plays a role at three sites.
Resumo:
High-energy e(-) and pi(-) were measured by the multichannel plate (MCP) detector at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute, Villigen, Switzerland. The measurements provide the absolute detection efficiencies for these particles: 5.8% +/- 0.5% for electrons in the beam momenta range 17.5-300 MeV/c and 6.0% +/- 1.3% for pions in the beam momenta range 172-345 MeV/c. The pulse height distribution determined from the measurements is close to an exponential function with negative exponent, indicating that the particles penetrated the MCP material before producing the signal somewhere inside the channel. Low charge extraction and nominal gains of the MCP detector observed in this study are consistent with the proposed mechanism of the signal formation by penetrating radiation. A very similar MCP ion detector will be used in the Neutral Ion Mass (NIM) spectrometer designed for the JUICE mission of European Space Agency (ESA) to the Jupiter system, to perform measurements of the chemical composition of the Galilean moon exospheres. The detection efficiency for penetrating radiation determined in the present studies is important for the optimisation of the radiation shielding of the NIM detector against the high-rate and high-energy electrons trapped in Jupiter's magnetic field. Furthermore, the current studies indicate that MCP detectors can be useful to measure high-energy particle beams at high temporal resolution. (C) 2015 AIP Publishing LLC.
Resumo:
The monoclonal antibody anti-CD66 labeled with (99m)Tc is widely used as Scintimun((R)) granulocyte for bone marrow immunoscintigraphy. Further, recently performed clinical radioimmunotherapy studies with [(90)Y]Y-anti-CD66 proved to be suitable for the treatment of hematologic malignancies. Before radioimmunotherapy with [(90)Y]Y-anti-CD66, dosimetric estimations are required to minimize radiotoxicity and determine individual applicable activities. Planar imaging, using gamma-emitting radionuclides, is conventionally carried out to estimate the absorbed organ doses. In contrast, immuno-PET (positron emission tomography) enables the quantification of anti-CD66 accumulation and provides better spatial and temporal resolution. Therefore, in this study, a semiautomated radiosynthesis of [(18)F] F-anti-CD66 was developed, using the (18)F-acylation agent, N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB). As a proof of concept, an intraindividual comparison between PET and conventional scintigraphy, using (18)F- and (99m)Tc-labeled anti-CD66 in 1 patient with high-risk leukemia, is presented. Both labeled antibodies displayed a similar distribution pattern with high preferential uptake in bone marrow. Urinary excretion of [(18)F] F-anti-CD66 was increased and bone marrow uptake reduced, in comparison to [(99m)Tc]Tc-anti-CD66. Nevertheless, PET-based dosimetry with [(18)F] F-anti-CD66 could provide additional information to support conventional scintigraphy. Moreover, [(18)F]F-anti-CD66 is ideally suited for bone marrow imaging using PET.