48 resultados para hard chromium electroplating
[Casein phosphopeptide--amorphous calcium phosphate (CPP-ACP) and its effect on dental hard tissues]
Resumo:
Dental products with casein phosphopeptide--amorphous calcium phosphate-nanocomplexes (CPP-ACP) are used in several tooth products (toothpastes, chewing gums, mouthrinses) and are as well used in dental filling material. CPP-ACP containing products are supposed to enhance remineralisation of dental hard tissues und thus might play a major role in prevention and therapy of initial caries or erosively dissolved enamel. Furthermore, also in hypersensitive teeth and even cases of hyposalivation, CPP-ACP containig products are supposed to improve the clinical condition. This article aims at three goals: point out the evolvement of CPP-ACP out of milk casein; description of possible biochemical effects of CPP-ACP on dental hard tissues; critical review of the current literature.
Resumo:
Thirty-two multiparous Holstein cows were used to investigate the effects of chromium-l-methionine (Cr-Met) supplementation and dietary grain source on performance and lactation during the periparturient period. Cows were fed a total mixed ration consisting of either a barley-based diet (BBD) or a corn-based diet (CBD) from 21 d before anticipated calving through 28 d after calving. The Cr-Met was supplemented at dosages of 0 or 0.08 mg of Cr/kg of metabolic body weight. The study was designed as a randomized complete block design with 2 (Cr-Met levels) x 2 (grain sources) factorial arrangement. There was no Cr effect on prepartum dry matter intake (DMI) or postpartum DMI, body weight (BW), net energy balance, and whole tract apparent digestibility of nutrients. Prepartum DMI as a percentage of BW tended to increase with Cr-Met. Supplemental Cr-Met tended to increase milk yield whereas milk protein percentage decreased. Pre- and postpartum DMI, BW, net energy balance, milk yield, and milk composition were not affected by substituting ground barley with ground corn. The addition of Cr-Met increased prepartum DMI and tended to increase postpartum DMI of the BBD but not the CBD. The change in prepartum DMI was smaller when the BBD was supplemented with Cr-Met but remained unchanged when the CBD was supplemented with Cr-Met. Yields of crude protein and total solids in milk and prepartum digestibility of DM and organic matter tended to increase when Cr-Met was added to the BBD but remained unchanged when added to the CBD. Periparturient cows failed to respond to the grain source of the diet, whereas they showed greater response in milk yield to diets supplemented with Cr-Met. In conclusion, the present results demonstrate that the beneficial effect of Cr-Met supplementation during the periparturient period to improve feed intake may depend on the grain source of the diet.
Resumo:
Plant cell expansion is controlled by a fine-tuned balance between intracellular turgor pressure, cell wall loosening and cell wall biosynthesis. To understand these processes, it is important to gain in-depth knowledge of cell wall mechanics. Pollen tubes are tip-growing cells that provide an ideal system to study mechanical properties at the single cell level. With the available approaches it was not easy to measure important mechanical parameters of pollen tubes, such as the elasticity of the cell wall. We used a cellular force microscope (CFM) to measure the apparent stiffness of lily pollen tubes. In combination with a mechanical model based on the finite element method (FEM), this allowed us to calculate turgor pressure and cell wall elasticity, which we found to be around 0.3 MPa and 20–90 MPa, respectively. Furthermore, and in contrast to previous reports, we showed that the difference in stiffness between the pollen tube tip and the shank can be explained solely by the geometry of the pollen tube. CFM, in combination with an FEM-based model, provides a powerful method to evaluate important mechanical parameters of single, growing cells. Our findings indicate that the cell wall of growing pollen tubes has mechanical properties similar to rubber. This suggests that a fully turgid pollen tube is a relatively stiff, yet flexible cell that can react very quickly to obstacles or attractants by adjusting the direction of growth on its way through the female transmitting tissue.
Resumo:
PURPOSE To evaluate the biologic width dimensions around implants with nonmatching implant-abutment diameters. MATERIALS AND METHODS Five canines had their mandibular premolars and first molars removed bilaterally and replaced with 12 implants that had nonmatching implant-abutment diameters. On one side, six implants were placed in a submerged surgical approach, and the other side utilized a nonsubmerged approach. Two of the implants on each side were placed either 1 mm above, even with, or 1 mm below the alveolar crest. Two months later, gold crowns were attached, and the dogs were sacrificed 6 months postloading. Block sections were processed for histologic and histomorphometric analyses. RESULTS The bone level, connective tissue length, epithelial dimension, and biologic width were not significantly different when the implants were initially placed in a submerged or nonsubmerged surgical approach. The bone level was significantly different around implants placed 1 mm above the crest compared to implants placed even with or 1 mm below the alveolar crest. The connective tissue dimension was not different for any implant level placement. The epithelial dimension and biologic width were significantly greater for implants placed 1 mm below the alveolar crest compared to implants placed even with or 1 mm above the alveolar crest. For five of six implant placements, connective tissue covered the implant/abutment interface. CONCLUSIONS This study reveals a fundamental change in the biologic response to implants with nonmatching implant-abutment diameters. Unlike implants with matching implant-abutment diameters, the connective tissue extended coronally past the interface (microgap). This morphologic tissue alteration represents a significant change in the biologic reaction to implant-abutment interfaces and suggests that marginal inflammation is eliminated or greatly reduced in these implant designs.
Resumo:
In the recently proposed framework of hard pion chiral perturbation theory, the leading chiral logarithms are predicted to factorize with respect to the energy dependence in the chiral limit. We have scrutinized this assumption in the case of vector and scalar pion form factors FV;S(s) by means of standard chiral perturbation theory and dispersion relations. We show that this factorization property is valid for the elastic contribution to the dispersion integrals for FV;S(s) but it is violated starting at three loops when the inelastic four-pion contributions arise.
Resumo:
The extraction of the finite temperature heavy quark potential from lattice QCD relies on a spectral analysis of the Wilson loop. General arguments tell us that the lowest lying spectral peak encodes, through its position and shape, the real and imaginary parts of this complex potential. Here we benchmark this extraction strategy using leading order hard-thermal loop (HTL) calculations. In other words, we analytically calculate the Wilson loop and determine the corresponding spectrum. By fitting its lowest lying peak we obtain the real and imaginary parts and confirm that the knowledge of the lowest peak alone is sufficient for obtaining the potential. Access to the full spectrum allows an investigation of spectral features that do not contribute to the potential but can pose a challenge to numerical attempts of an analytic continuation from imaginary time data. Differences in these contributions between the Wilson loop and gauge fixed Wilson line correlators are discussed. To better understand the difficulties in a numerical extraction we deploy the maximum entropy method with extended search space to HTL correlators in Euclidean time and observe how well the known spectral function and values for the real and imaginary parts are reproduced. Possible venues for improvement of the extraction strategy are discussed.
Resumo:
Goal evaluation is an essential element of the process of designing regulatory frameworks. Lawyers and legal scholars do however tend to ignore it. The present paper stresses the importance of pinpointing the precise regulatory objectives in the fluid environment of electronic communications, since, due to their technological and economic development, they have become the vital basis for communication and distribution of information in modern societies. The paper attempts an analysis of the underlying regulatory objectives in contemporary communications and seeks to put together the complex puzzle of economic and societal issues.