20 resultados para growth parameters
Resumo:
Recent changes in sanitary policies within the European Union (EU) concerning disposal of carcasses of domestic animals and the increase of non-natural mortality factors, such as illegal poisoning, are threatening European vultures. However, the effects of anthropogenic activities on demographic parameters are poorly studied. Using a long-term study (1994–2011) of the threatened Pyrenean Bearded Vulture Gypaetus barbatus population, we assess the variation in the proportion of breeding pairs, egg-laying dates, clutch size, breeding success, and survival following a sharp reduction in food availability in 2005 due to the application of restrictive sanitary policies decreasing livestock carcass availability. We found a delay in laying dates and a regressive trend in clutch size, breeding success, and survival following policy change. The maintenance of specific supplementary feeding stations for Bearded Vultures probably reduced the negative effects of illegal poisoning and food shortages, which mainly affected subadult survival. A drop in food availability may have produced changes in demographic parameters and an increase in mortality due to an increased exposure to contaminated food. As a result, supplementary feeding as a precautionary measure can be a useful tool to reduce illegal poisoning and declines in demographic parameters until previous food availability scenarios are achieved. This study shows how anthropogenic activities through human health regulations that affect habitat quality can suddenly modify demographic parameters in long-lived species, including those, such as survival, with high sensitivity to population growth rate.
Resumo:
BACKGROUND Intrauterine growth restriction (IUGR) occurs in up to 10% of pregnancies and is considered as a major risk to develop various diseases in adulthood, such as cardiovascular diseases, insulin resistance, hypertension or end stage kidney disease. Several IUGR models have been developed in order to understand the biological processes linked to fetal growth retardation, most of them being rat or mouse models and nutritional models. In order to reproduce altered placental flow, surgical models have also been developed, and among them bilateral uterine ligation has been frequently used. Nevertheless, this model has never been developed in the mouse, although murine tools display multiple advantages for biological research. The aim of this work was therefore to develop a mouse model of bilateral uterine ligation as a surgical model of IUGR. RESULTS In this report, we describe the set up and experimental data obtained from three different protocols (P1, P2, P3) of bilateral uterine vessel ligation in the mouse. Ligation was either performed at the cervical end of each uterine horn (P1) or at the central part of each uterine horn (P2 and P3). Time of surgery was E16 (P1), E17 (P2) or E16.5 (P3). Mortality, maternal weight and abortion parameters were recorded, as well as placentas weights, fetal resorption, viability, fetal weight and size. Results showed that P1 in test animals led to IUGR but was also accompanied with high mortality rate of mothers (50%), low viability of fetuses (8%) and high resorption rate (25%). P2 and P3 improved most of these parameters (decreased mortality and improved pregnancy outcomes; improved fetal viability to 90% and 27%, respectively) nevertheless P2 was not associated to IUGR contrary to P3. Thus P3 experimental conditions enable IUGR with better pregnancy and fetuses outcomes parameters that allow its use in experimental studies. CONCLUSIONS Our results show that bilateral uterine artery ligation according to the protocol we have developed and validated can be used as a surgical mouse model of IUGR.
Resumo:
AIM The aim was to elucidate whether essential hypertension is associated with altered capillary morphology and density and to what extent exercise training can normalize these parameters. METHODS To investigate angiogenesis and capillary morphology in essential hypertension, muscle biopsies were obtained from m. vastus lateralis in subjects with essential hypertension (n = 10) and normotensive controls (n = 11) before and after 8 weeks of aerobic exercise training. Morphometry was performed after transmission electron microscopy, and protein levels of several angioregulatory factors were determined. RESULTS At baseline, capillary density and capillary-to-fibre ratio were not different between the two groups. However, the hypertensive subjects had 9% lower capillary area (12.7 ± 0.4 vs. 13.9 ± 0.2 μm(2)) and tended to have thicker capillary basement membranes (399 ± 16 vs. 358 ± 13 nm; P = 0.094) than controls. Protein expression of vascular endothelial growth factor (VEGF), VEGF receptor-2 and thrombospondin-1 were similar in normotensive and hypertensive subjects, but tissue inhibitor of matrix metalloproteinase was 69% lower in the hypertensive group. After training, angiogenesis was evident by 15% increased capillary-to-fibre ratio in the hypertensive subjects only. Capillary area and capillary lumen area were increased by 7 and 15% in the hypertensive patients, whereas capillary basement membrane thickness was decreased by 17% (P < 0.05). VEGF expression after training was increased in both groups, whereas VEGF receptor-2 was decreased by 25% in the hypertensive patients(P < 0.05). CONCLUSION Essential hypertension is associated with decreased lumen area and a tendency for increased basement membrane thickening in capillaries of skeletal muscle. Exercise training may improve the diffusion conditions in essential hypertension by altering capillary structure and capillary number.
Resumo:
Deregulated expression of the MET receptor tyrosine kinase has been reported in up to 50% of patients with hepatocellular carcinoma, the most abundant form of liver cancers, and is associated with decreased survival. Consequently, MET is considered as a molecular target in this malignancy, whose progression is highly dependent on extensive angiogenesis. Here we studied the impact of MET small molecule inhibitors on angiogenesis-associated parameters and growth of xenograft liver models consisting of cells expressing MET-mutated variants M1268T and Y1248H, which exhibit constitutive kinase activity. We demonstrate that MET mutations expression is associated with significantly increased production of vascular endothelial growth factor, which is blocked by MET targeting only in cells expressing the M1268T inhibitor-sensitive but not in the Y1248H inhibitor-resistant variant. Decrease in vascular endothelial growth factor production is also associated with reduction of tyrosine phopshorylation of the vascular endothelial growth factor receptor 2 expressed on primary liver sinusoidal endothelial cells and with inhibition of vessel formation. Furthermore, MET inhibition demonstrated an efficient anti-tumor activity and considerable reduction in microvessel density only against the M1268T-derived intrahepatic tumors. Collectively, our data support the role of targeting MET-associated angiogenesis as a major biological determinant for liver tumor growth control.
Resumo:
Question: Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and de- generation. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM) [1]. Further studies showed that growth factors from the transforming growth factor (TGF) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC) [2]. Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods: Bovine IVD cells were isolated by pronase/collagenase II overnight digestion. After monolayer expansion up to passage 3, cells were transfected with the plasmid pGDF6 (RG211366, Origene, SF) or with green fluorescence protein (GFP) control using the NeonÒ transfection system (Invitrogen, Basel), both equipped with a Cy- tomegalovirus (CMV) promotor to induce over-expression. We tested a range of yet unpublished parameters for each of the primary disc cells to optimize efficiency. To test a non-viral gene therapy applied directly to 3D whole organ culture, bovine IVDs were harvested from fresh tails obtained from the abattoir within 5 h post-mortem [3]. Discs were then pre-incubated for 24 h in high glucose Dulbecco’s Modified Eagle Medium and 5 % fetal calf serum. Each disc was transfected by injection of 5 lg of plasmid GDF6 (Origene, RG211366) into the center by 25G needle and using Hamilton sy- ringe. Electroporation was performed using 2-needle array electrode or tweezertrodes; 8 pulses at 200mv/cm with an interval of 10 ms were applied using ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) (Fig. 1). After transfection discs were cultured for 72 h to allow expression of GFP or GDF6. Discs were then fixed, cryosectioned and analysed by immunofluorescence against GDF6. Results: We successfully transfected bovine NP and AF cells in monolayer culture with the two plasmids using a 1,400 V, 20 ms and 2 pulses with a *25 % efficiency using 0.15 M cells and 3 lg DNA (Fig. 1). Organ IVD culture transfection revealed GFP6 positive staining in the centre of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GFP posi- tive cells. Conclusions: We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgments: This study was supported by the Lindenhof Foundation ‘‘Forschung und Lehre’’ (Project no. 13-02-F). References 1. Roughly PJ (2004) Spine (Phila) 29:2691–2699 2. 3. Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014) Arthritis Res Ther 16:R67 Chan SC, Gantenbein-Ritter B (2012) J Vis Exp 60(60):e3490