18 resultados para growth management


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensuring sustainable use of natural resources is crucial for maintaining the basis for our livelihoods. With threats from climate change, disputes over water, biodiversity loss, competing claims on land, and migration increasing worldwide, the demands for sustainable land management (SLM) practices will only increase in the future. For years already, various national and international organizations (GOs, NGOs, donors, research institutes, etc.) have been working on alternative forms of land management. And numerous land users worldwide – especially small farmers – have been testing, adapting, and refining new and better ways of managing land. All too often, however, the resulting SLM knowledge has not been sufficiently evaluated, documented and shared. Among other things, this has often prevented valuable SLM knowledge from being channelled into evidence-based decision-making processes. Indeed, proper knowledge management is crucial for SLM to reach its full potential. Since more than 20 years, the international WOCAT network documents and promotes SLM through its global platform. As a whole, the WOCAT methodology comprises tools for documenting, evaluating, and assessing the impact of SLM practices, as well as for knowledge sharing, analysis and use for decision support in the field, at the planning level, and in scaling up identified good practices. In early 2014, WOCAT’s growth and ongoing improvement culminated in its being officially recognized by the UNCCD as the primary recommended database for SLM best practices. Over the years, the WOCAT network confirmed that SLM helps to prevent desertification, to increase biodiversity, enhance food security and to make people less vulnerable to the effects of climate variability and change. In addi- tion, it plays an important role in mitigating climate change through improving soil organic matter and increasing vegetation cover. In-depth assessments of SLM practices from desertification sites enabled an evaluation of how SLM addresses prevalent dryland threats. The impacts mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Among others, favourable local-scale cost-benefit relationships of SLM practices play a crucial role in their adoption. An economic analysis from the WOCAT database showed that land users perceive a large majority of the technologies as having benefits that outweigh costs in the long term. The high investment costs associated with some practices may constitute a barrier to adoption, however, where appropriate, short-term support for land users can help to promote these practices. The increased global concerns on climate change, disaster risks and food security redirect attention to, and trigger more funds for SLM. To provide the necessary evidence-based rationale for investing in SLM and to reinforce expert and land users assessments of SLM impacts, more field research using inter- and transdisciplinary approaches is needed. This includes developing methods to quantify and value ecosystem services, both on-site and off-site, and assess the resilience of SLM practices, as currently aimed at within the EU FP7 projects CASCADE and RECARE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slow growth, branch dieback and scarce acorn yield are visible symptoms of decay in abandoned Quercus pyrenaica coppices. A hypothetical root-to-shoot (R:S) imbalance provoked by historical coppicing is investigated as the underlying driver of stand degradation. After stem genotyping, 12 stems belonging to two clones covering 81 and 16 m2 were harvested and excavated to measure above- and below-ground biomass and nonstructural carbohydrate (NSC) pools. To study root system functionality, root connections and root longevity were assessed by radiocarbon analysis. Seasonality of NSC was monitored on five additional clones. NSC pools, R:S biomass ratio and fine roots-to-foliage ratio were higher in the large clone, whose centennial root system, estimated to be 550 years old, maintained large amounts of sapwood (51.8%) for NSC storage. 248 root connections were observed within the large clone, whereas the small clone showed comparatively simpler root structure (26 connections). NSC concentrations were higher in spring (before bud burst) and autumn (before leaf fall), and lower in summer (after complete leaf expansion); they were always higher in roots than in stems or twigs. The persistence of massive and highly inter-connected root systems after coppicing may lead to increasing R:S biomass ratios and root NSC pools over time. We highlight the need of surveying belowground organs to understand aboveground dynamics of Q. pyrenaica, and suggest that enhanced belowground NSC storage and consumption reflect a trade-off between clonal vegetative resilience and aboveground performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foresters frequently lack sufficient information about thinning intensity effects to optimize semi-natural forest management and their effects and interaction with climate are still poorly understood. In an Abies pinsapo–Pinus pinaster–Pinus sylvestris forest with three thinning intensities, a dendrochronologial approach was used to evaluate the short-term responses of basal area increment (BAI), carbon isotope (δ13C) and water use efficiency (iWUE) to thinning intensity and climate. Thinning generally increased BAI in all species, except for the heavy thinning in P. sylvestris. Across all the plots, thinning increased 13C-derived water-use efficiency on average by 14.49% for A. pinsapo, 9.78% for P. sylvestris and 6.68% for P. pinaster, but through different ecophysiological mechanisms. Our findings provide a robust mean of predicting water use efficiency responses from three coniferous species exposed to different thinning strategies which have been modulated by climatic conditions over time.