27 resultados para graphical overlay
Resumo:
BACKGROUND: Graphical displays of results allow researchers to summarise and communicate the key findings of their study. Diagnostic information should be presented in an easily interpretable way, which conveys both test characteristics (diagnostic accuracy) and the potential for use in clinical practice (predictive value). METHODS: We discuss the types of graphical display commonly encountered in primary diagnostic accuracy studies and systematic reviews of such studies, and systematically review the use of graphical displays in recent diagnostic primary studies and systematic reviews. RESULTS: We identified 57 primary studies and 49 systematic reviews. Fifty-six percent of primary studies and 53% of systematic reviews used graphical displays to present results. Dot-plot or box-and- whisker plots were the most commonly used graph in primary studies and were included in 22 (39%) studies. ROC plots were the most common type of plot included in systematic reviews and were included in 22 (45%) reviews. One primary study and five systematic reviews included a probability-modifying plot. CONCLUSION: Graphical displays are currently underused in primary diagnostic accuracy studies and systematic reviews of such studies. Diagnostic accuracy studies need to include multiple types of graphic in order to provide both a detailed overview of the results (diagnostic accuracy) and to communicate information that can be used to inform clinical practice (predictive value). Work is required to improve graphical displays, to better communicate the utility of a test in clinical practice and the implications of test results for individual patients.
Resumo:
Greedy routing can be used in mobile ad-hoc networks as geographic routing protocol. This paper proposes to use greedy routing also in overlay networks by positioning overlay nodes into a multi-dimensional Euclidean space. Greedy routing can only be applied when a routing decision makes progress towards the final destination. Our proposed overlay network is built such that there will be always progress at each forwarding node. This is achieved by constructing at each node a so-called nearest neighbor convex set (NNCS). NNCSs can be used for various applications such as multicast routing, service discovery and Quality-of-Service routing. NNCS has been compared with Pastry, another topology-aware overlay network. NNCS has superior relative path stretches indicating the optimality of a path.
Resumo:
Various applications for the purposes of event detection, localization, and monitoring can benefit from the use of wireless sensor networks (WSNs). Wireless sensor networks are generally easy to deploy, with flexible topology and can support diversity of tasks thanks to the large variety of sensors that can be attached to the wireless sensor nodes. To guarantee the efficient operation of such a heterogeneous wireless sensor networks during its lifetime an appropriate management is necessary. Typically, there are three management tasks, namely monitoring, (re) configuration, and code updating. On the one hand, status information, such as battery state and node connectivity, of both the wireless sensor network and the sensor nodes has to be monitored. And on the other hand, sensor nodes have to be (re)configured, e.g., setting the sensing interval. Most importantly, new applications have to be deployed as well as bug fixes have to be applied during the network lifetime. All management tasks have to be performed in a reliable, time- and energy-efficient manner. The ability to disseminate data from one sender to multiple receivers in a reliable, time- and energy-efficient manner is critical for the execution of the management tasks, especially for code updating. Using multicast communication in wireless sensor networks is an efficient way to handle such traffic pattern. Due to the nature of code updates a multicast protocol has to support bulky traffic and endto-end reliability. Further, the limited resources of wireless sensor nodes demand an energy-efficient operation of the multicast protocol. Current data dissemination schemes do not fulfil all of the above requirements. In order to close the gap, we designed the Sensor Node Overlay Multicast (SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers. In contrast to other multicast transport protocols, which do not support reliability mechanisms, SNOMC supports end-to-end reliability using a NACK-based reliability mechanism. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. It is complemented by a data acknowledgement after successful reception of all data fragments by the receiver nodes. In SNOMC three different caching strategies are integrated for an efficient handling of necessary retransmissions, namely, caching on each intermediate node, caching on branching nodes, or caching only on the sender node. Moreover, an option was included to pro-actively request missing fragments. SNOMC was evaluated both in the OMNeT++ simulator and in our in-house real-world testbed and compared to a number of common data dissemination protocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The results showed that SNOMC outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption. Moreover, we showed that SNOMC performs well with different underlying MAC protocols, which support different levels of reliability and energy-efficiency. Thus, SNOMC can offer a robust, high-performing solution for the efficient distribution of code updates and management information in a wireless sensor network. To address the three management tasks, in this thesis we developed the Management Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specifically designed for the management of heterogeneous wireless sensor networks. A distinguished feature of its design is the use of wireless mesh nodes as backbone, which enables diverse communication platforms and offloading functionality from the sensor nodes to the mesh nodes. This hierarchical architecture allows for efficient operation of the management tasks, due to the organisation of the sensor nodes into small sub-networks each managed by a mesh node. Furthermore, we developed a intuitive -based graphical user interface, which allows non-expert users to easily perform management tasks in the network. In contrast to other management frameworks, such as Mate, MANNA, TinyCubus, or code dissemination protocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution monitoring, configuration and code updating of sensor nodes. Integration of SNOMC into MARWIS further increases performance efficiency of the management tasks. To our knowledge, our approach is the first one, which offers a combination of a management architecture with an efficient overlay multicast transport protocol. This combination of SNOMC and MARWIS supports reliably, time- and energy-efficient operation of a heterogeneous wireless sensor network.
Resumo:
The Sensor Node Overlay Multicast (SNOMC) protocol supports reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers as it is needed for configuration, code update, and management operations in wireless sensor networks. SNOMC supports end-to-end reliability using negative acknowledgements. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. SNOMC supports three different caching strategies namely caching on each intermediate node, caching on branching nodes, or caching on the sender node only. SNOMC was evaluated in our in-house real-world testbed and compared to a number of common data dissemination protocols. It outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption.
Resumo:
Automated identification of vertebrae from X-ray image(s) is an important step for various medical image computing tasks such as 2D/3D rigid and non-rigid registration. In this chapter we present a graphical model-based solution for automated vertebra identification from X-ray image(s). Our solution does not ask for a training process using training data and has the capability to automatically determine the number of vertebrae visible in the image(s). This is achieved by combining a graphical model-based maximum a posterior probability (MAP) estimate with a mean-shift based clustering. Experiments conducted on simulated X-ray images as well as on a low-dose low quality X-ray spinal image of a scoliotic patient verified its performance.