52 resultados para glycerin complexation and charcoal adsorption


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pollen and macrofossils were analyzed at two sites above today's treeline (or tree limit) in the Swiss Central Alps (Gouillé Loéré, 2503 m a.s.l., and Lengi Egga, 2557 m a.s.l.) to test two contrasting hypotheses about the natural formation of timberline (the upper limit of closed forest) in the Alps. Our results revealed that Pinus cembra--Larix decidua forests near timberline were rather closed between 9000 and 2500 B.C. (9600-4000 14C yr BP), when timberline fluctuations occurred within a belt 100-150 m above today's tree limit. The treeline ecocline above timberline was characterized by the mixed occurrence of tree, shrub, dwarf-shrub, and herbaceous species, but it did not encompass more than 100-150 altitudinal meters. The uppermost limit reached by timberline and treeline during the Holocene was ca. 2420 and 2530 m, respectively, i.e., about 120 to 180 m higher than today. Between 3500 and 2500 B.C. (4700-4000 14C yr BP) timberline progressively sank by about 300 m, while treeline was lowered only ca. 100 m. This change led to an enlargement of the treeline-ecocline belt (by ca. 300 m) after 2500 B.C. (4000 14C yr BP). Above the treeline ecocline, natural meadows dominated by dwarf shrubs (e.g., Salix herbacea) and herbaceous species (e.g., Helianthemum, Taraxacum, Potentialla, Leontodon t., Cerastium alpinum t., Cirsium spinosissimum, Silene exscapa t., and Saxifraga stellaris) have been present since at least 11,000 cal yr ago. In these meadows tree and tall shrub species (>0.5 m) never played a major role. These results support the conventional hypothesis of a narrow ecocline with rather sharp upper timberline and treeline boundaries and imply that today's treeless alpine communities in the Alps are close to a natural stage. Pollen (percentages and influx), stomata, and charcoal data may be useful for determining whether or not a site was treeless. Nevertheless, a reliable and detailed record of past local vegetation near and above timberline is best achieved through the inclusion of macrofossil analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forest fires play a key role in the global carbon cycle and thus, can affect regional and global climate. Although fires in extended areas of Russian boreal forests have a considerable influence on atmospheric greenhouse gas and soot concentrations, estimates of their impact on climate are hampered by a lack of data on the history of forest fires. Especially regions with strong continental climate are of high importance due to an intensified development of wildfires. In this study we reconstruct the fire history of Southern Siberia during the past 750 years using ice-core based nitrate, potassium, and charcoal concentration records from Belukha glacier in the continental Siberian Altai. A period of exceptionally high forest-fire activity was observed between AD 1600 and 1680, following an extremely dry period AD 1540-1600. Ice-core pollen data suggest distinct forest diebacks and the expansion of steppe in response to dry climatic conditions. Coherence with a paleoenvironmental record from the 200 km distant Siberian lake Teletskoye shows that the vegetational shift AD 1540-1680, the increase in fire activity AD 1600-1680, and the subsequent recovery of forests AD 1700 were of regional significance. Dead biomass accumulation in response to drought and high temperatures around AD 1600 probably triggered maximum forest-fire activity AD 1600-1680. The extreme dry period in the 16th century was also observed at other sites in Central Asia and is possibly associated with a persistent positive mode of the Pacific Decadal Oscillation (PDO). No significant increase in biomass burning occurred in the Altai region during the last 300 years, despite strongly increasing temperatures and human activities. Our results imply that precipitation changes controlled fire-regime and vegetation shifts in the Altai region during the past 750 years. We conclude that high sensitivity of ecosystems to occasional decadal-scale drought events may trigger unprecedented environmental reorganizations under global-warming conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anaesthesia causes a respiratory impairment, whether the patient is breathing spontaneously or is ventilated mechanically. This impairment impedes the matching of alveolar ventilation and perfusion and thus the oxygenation of arterial blood. A triggering factor is loss of muscle tone that causes a fall in the resting lung volume, functional residual capacity. This fall promotes airway closure and gas adsorption, leading eventually to alveolar collapse, that is, atelectasis. The higher the oxygen concentration, the faster will the gas be adsorbed and the aleveoli collapse. Preoxygenation is a major cause of atelectasis and continuing use of high oxygen concentration maintains or increases the lung collapse, that typically is 10% or more of the lung tissue. It can exceed 25% to 40%. Perfusion of the atelectasis causes shunt and cyclic airway closure causes regions with low ventilation/perfusion ratios, that add to impaired oxygenation. Ventilation with positive end-expiratory pressure reduces the atelectasis but oxygenation need not improve, because of shift of blood flow down the lung to any remaining atelectatic tissue. Inflation of the lung to an airway pressure of 40 cmH2O recruits almost all collapsed lung and the lung remains open if ventilation is with moderate oxygen concentration (< 40%) but recollapses within a few minutes if ventilation is with 100% oxygen. Severe obesity increases the lung collapse and obstructive lung disease and one-lung anesthesia increase the mismatch of ventilation and perfusion. CO2 pneumoperitoneum increases atelectasis formation but not shunt, likely explained by enhanced hypoxic pulmonary vasoconstriction by CO2. Atelectasis may persist in the postoperative period and contribute to pneumonia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire has an influence on regional to global atmospheric chemistry and climate. Molecular markers of biomass burning archived in lake sediments are becoming increasingly important in paleoenvironmental reconstruction and may help determine the interaction between climate and fire activity. Here, we present a high performance anion exchange chromatography–mass spectrometry method to allow separation and analysis of levoglucosan, mannosan and galactosan in lake sediments, with implications for reconstructing past biomass burning events. Determining mannosan and galactosan in Lake Kirkpatrick, New Zealand (45.03°S, 168.57°E) sediment cores and comparing these isomers with the more abundant biomass burning markers levoglucosan and charcoal represents a significant advancement in our ability to analyze past fire activity. Levoglucosan, mannosan and galactosan concentrations correlated significantly with macroscopic charcoal concentration. Levoglucosan/mannosan and levoglucosan/(mannosan + galactosan) ratios may help determine not only when fires occurred, but also if changes in the primary burned vegetation occurred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many parts of the eastern African region wood-based fuels will remain dominant sources of energy in coming decades. Pressure on forests, especially in semi-arid areas will therefore continue increasing. In this context, the role of liquid biofuels as substitutes for firewood and charcoal, to help reducing pressure on woody biomass and contributing to a better energy security of rural communities, has remained controversial among researchers and practitioners. At household level, the economic and technical feasibility of straight vegetable oil (SVO) was assessed mainly on Jatropha curcas, with unpersuasive results. So far nothing is known about the suitability as an energy carrier of Jatropha mahafalensis Jum. & H. Perrier, the only endemic representative of the Jatropha genus in Madagascar. This paper explores the potential of this plant as a biofuel feedstock in the agro-pastoral area of Soalara, in the semi-arid south-western part of Madagascar. Only hedge-based production was considered to rule out competition over land with food crops. Yield data, the length of currently existing hedges and energy consumption patterns of households were used to assess the quantitative potential and economic viability of J. mahafalensis SVO for lighting and cooking. Tests were conducted with cooking and lighting devices to assess their technical suitability at household level. The paper concludes that J. mahafalensis hedges have some potential to replace paraffin for lighting (though without much economic benefit for the concerned households), but not to replace charcoal or firewood for cooking. The paper recommends that rural energy strategies in similar contexts do not focus only on substituting current fuels with SVO, but should also take into consideration other alternatives. In the case of cooking, there seems to be substantially more potential in increasing the efficiency of current fuel production and consumption technologies (kilns and stoves); and in the case of lighting, solutions based on SVO need to be compared against other options such as portable solar devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of magnetic measurements in the detection of fire signals has been neglected since the work of Rummery et al., (1979), yet considerable developments have been made in the interpretation of magnetic measurements over the last 16 years. This paper presents a study of the fire history of Lago di Origlio in the southern Swiss Alps. The study utilises the technique of mineral magnetism alongside the stratigraphic pollen, spore and charcoal records. Correlation between the various proxy records indicates that a magnetic ‘fire’ record is present within the sediments for the last 4 ka. The magnetic fire record has a distinct mineralogical and magnetic grain size signature that can be recognised against the background sedimentary signal. The results suggest that magnetic measurements may be usefully employed in the reconstruction of fire history. Their application is rapid and non-destructive and the results may provide additional information in relation to the links between catchment fire events and the sedimentary record.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using pollen percentages and charcoal influx to reconstruct the Holocene vegetation and fire history, we differentiate six possible responses of plants to fire of medium and high frequency: fire-intolerant, fire damaged, fire-sensitive, fire-indifferent, fire-enhanced and fire-adapted. The fire sensitivity of 17 pollen types, representing 20 woody species in the southern Alps, is validated by comparison with today's ecological studies of plant chronosequences. A surprising coincidence of species reaction to fire of medium frequency is character istic for completely different vegetation types, such as woodlands dominated byAbies alba (7000 years ago) andCastanea sativa (today). The temporal persistence of post-fire behaviour of plant taxa up to thousands of years suggests a generally valid species-related fire sensitivity that may be influenced only in part by changing external conditions. A non-analogous behaviour of woody taxa after fire is documented for high fire frequencies. Divergent behaviour patterns of plant taxa in response to medium and high fire frequencies (e.g., increases and decreases ofAlnus glutinosa) also indicate that post-fire plant reactions may change with increasing fire fre quency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A deeper understanding of past vegetation dynamics is required to better assess future vegetation responses to global warming in the Alps. Lake sediments from Lac de Bretaye, a small subalpine lake in the Northern Swiss Alps (1780 m a.s.l.), were analysed to reconstruct past vegetation dynamics for the entire Holocene, using pollen, macrofossil and charcoal analyses as main proxies. The results show that timberline reached the lake’s catchment area at around 10,300 cal. BP, supporting the hypothesis of a delayed postglacial afforestation in the Northern Alps. At the same time, thermophilous trees such as Ulmus, Tilia and Acer established in the lowlands and expanded to the altitude of the lake, forming distinctive boreo-nemoral forests with Betula, Pinus cembra and Larix decidua. From about 5000 to 3500 cal. BP, thermophilous trees declined because of increasing human land use, mainly driven by the mass expansion of Picea abies and severe anthropogenic fire activity. From the Bronze Age onwards (c. 4200–2800 cal. BP), grazing indicators and high values for charcoal concentration and influx attest an intensifying human impact, fostering the expansion of Alnus viridis and Picea abies. Hence, biodiversity in alpine meadows increased, whereas forest diversity declined, as can be seen in other regional records. We argue that the anticipated climate change and decreasing human impact in the Alps today will not only lead to an upward movement of timberline with consequent loss of area for grasslands, but also to a disruption of Picea abies forests, which may allow the re-expansion of thermophilous tree species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New palaeoecological investigations (pollen, macrofossil, and charcoal analyses) provide important evidence on the fire history and the long-term fire ecology of different regions of Switzerland. The results from the Swiss plateau, the Northern and Central Alps and Southern Switzerland suggest that fire played a different role for the long-term vegetational development in the different regions. In the Northern Alps and Southern Switzerland anthropogenic fires led to the disappearance of entire forest communities. These fires especially affected the fire-sensitive species Abies alba. On the Swiss Plateau fire frequencies were markedly lower than in the Southern Alps. Nevertheless, fires probably led to a decline in the occurrence of fire-sensitive taxa such as Ulmus, Fraxinus excelsior or Tilia at lower altitudes (Fagus silvatica-Quercus belt). First evidences from the Central Alps suggest that forest fires were naturally more frequent in this continental region and that the vegetation might be better fire-adapted than the original (partly or completely vanished) plant communities of the Swiss Plateau, the Northern Alps and Southern Switzerland.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background During production and processing of multi-walled carbon nanotubes (MWCNTs), they may be inhaled and may enter the pulmonary circulation. It is essential that interactions with involved body fluids like the pulmonary surfactant, the blood and others are investigated, particularly as these interactions could lead to coating of the tubes and may affect their chemical and physical characteristics. The aim of this study was to characterize the possible coatings of different functionalized MWCNTs in a cell free environment. Results To simulate the first contact in the lung, the tubes were coated with pulmonary surfactant and subsequently bound lipids were characterized. The further coating in the blood circulation was simulated by incubating the tubes in blood plasma. MWCNTs were amino (NH2)- and carboxyl (-COOH)-modified, in order to investigate the influence on the bound lipid and protein patterns. It was shown that surfactant lipids bind unspecifically to different functionalized MWCNTs, in contrast to the blood plasma proteins which showed characteristic binding patterns. Patterns of bound surfactant lipids were altered after a subsequent incubation in blood plasma. In addition, it was found that bound plasma protein patterns were altered when MWCNTs were previously coated with pulmonary surfactant. Conclusions A pulmonary surfactant coating and the functionalization of MWCNTs have both the potential to alter the MWCNTs blood plasma protein coating and to determine their properties and behaviour in biological systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of various combinations of enamel matrix derivative (EMD) and grafting materials has been shown to promote periodontal wound healing/regeneration. However, the downstream cellular behavior of periodontal ligament (PDL) cells and osteoblasts has not yet been studied. Furthermore, it is unknown to what extent the bleeding during regenerative surgery may influence the adsorption of exogenous proteins to the surface of bone grafting materials and the subsequent cellular behavior. In the present study, the aim is to test EMD adsorption to the surface of natural bone mineral (NBM) particles in the presence of blood and determine the effect of EMD coating to NBM particles on downstream cellular pathways, such as adhesion, proliferation, and differentiation of primary human osteoblasts and PDL cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chromated glycerin (CG) is an effective, although painful, sclerosing agent for telangiectasias and reticular leg veins treatment.