27 resultados para gini and concentration indices
Resumo:
Endometriosis affects 10-20% of women during reproductive age and is a common cause of infertility and pain leading to work absenteeism and reduced quality of life.The objective of this study was to investigate the association between the presence and concentration of interleukin-8 (IL-8), RANTES, osteoprotegerin (OPG), pregnancy-associated plasma protein A (PAPP-A), tumour necrosis factor-alpha (TNF-alpha), midkine and glycodelin in the peritoneal fluid (PF) and the intensity of pain reported by patients undergoing laparoscopy in our clinic. They rated their pain during menstruation, intercourse and lower abdominal using a visual analogue scale. During laparoscopy, PF was aspirated. Pain scores were correlated to the concentration of the above substances in the PF and to the stage of endometriosis. Endometriosis was histologically confirmed in 41 of 68 participating women; 27 without such evidence were considered as controls. TNF-alpha and glycodelin correlated positively with the level of menstrual pain. For IL-8, RANTES, OPG and PAPP-A no correlation between their PF concentration and the menstrual pain scores was observed. Patients with severe dysmenorrhoea had increased PF cytokine and marker levels; the difference was significant for TNF-alpha and glycodelin when compared with the other patients (no or moderate pain). TNF-alpha and glycodelin may thus play a role in endometriosis and the severity of menstrual pain.
Resumo:
In this paper we compare the performance of two image classification paradigms (object- and pixel-based) for creating a land cover map of Asmara, the capital of Eritrea and its surrounding areas using a Landsat ETM+ imagery acquired in January 2000. The image classification methods used were maximum likelihood for the pixel-based approach and Bhattacharyya distance for the object-oriented approach available in, respectively, ArcGIS and SPRING software packages. Advantages and limitations of both approaches are presented and discussed. Classifications outputs were assessed using overall accuracy and Kappa indices. Pixel- and object-based classification methods result in an overall accuracy of 78% and 85%, respectively. The Kappa coefficient for pixel- and object-based approaches was 0.74 and 0.82, respectively. Although pixel-based approach is the most commonly used method, assessment and visual interpretation of the results clearly reveal that the object-oriented approach has advantages for this specific case-study.
Resumo:
BACKGROUND: Patients undergoing laparoscopic Roux-en-Y gastric bypass (LRYGB) often have substantial comorbidities, which must be taken into account to appropriately assess expected postoperative outcomes. The Charlson/Deyo and Elixhauser indices are widely used comorbidity measures, both of which also have revised algorithms based on enhanced ICD-9-CM coding. It is currently unclear which of the existing comorbidity measures best predicts early postoperative outcomes following LRYGB. METHODS: Using the Nationwide Inpatient Sample, patients 18 years or older undergoing LRYGB for obesity between 2001 and 2008 were identified. Comorbidities were assessed according to the original and enhanced Charlson/Deyo and Elixhauser indices. Using multivariate logistic regression, the following early postoperative outcomes were assessed: overall postoperative complications, length of hospital stay, and conversion to open surgery. Model performance for the four comorbidity indices was assessed and compared using C-statistics and the Akaike's information criterion (AIC). RESULTS: A total of 70,287 patients were included. Mean age was 43.1 years (SD, 10.8), 81.6 % were female and 60.3 % were White. Both the original and enhanced Elixhauser indices modestly outperformed the Charlson/Deyo in predicting the surgical outcomes. All four models had similar C-statistics, but the original Elixhauser index was associated with the smallest AIC for all of the surgical outcomes. CONCLUSIONS: The original Elixhauser index is the best predictor of early postoperative outcomes in our cohort of patients undergoing LRYGB. However, differences between the Charlson/Deyo and Elixhauser indices are modest, and each of these indices provides clinically relevant insight for predicting early postoperative outcomes in this high-risk patient population.
Resumo:
BACKGROUND Clinical prognostic groupings for localised prostate cancers are imprecise, with 30-50% of patients recurring after image-guided radiotherapy or radical prostatectomy. We aimed to test combined genomic and microenvironmental indices in prostate cancer to improve risk stratification and complement clinical prognostic factors. METHODS We used DNA-based indices alone or in combination with intra-prostatic hypoxia measurements to develop four prognostic indices in 126 low-risk to intermediate-risk patients (Toronto cohort) who will receive image-guided radiotherapy. We validated these indices in two independent cohorts of 154 (Memorial Sloan Kettering Cancer Center cohort [MSKCC] cohort) and 117 (Cambridge cohort) radical prostatectomy specimens from low-risk to high-risk patients. We applied unsupervised and supervised machine learning techniques to the copy-number profiles of 126 pre-image-guided radiotherapy diagnostic biopsies to develop prognostic signatures. Our primary endpoint was the development of a set of prognostic measures capable of stratifying patients for risk of biochemical relapse 5 years after primary treatment. FINDINGS Biochemical relapse was associated with indices of tumour hypoxia, genomic instability, and genomic subtypes based on multivariate analyses. We identified four genomic subtypes for prostate cancer, which had different 5-year biochemical relapse-free survival. Genomic instability is prognostic for relapse in both image-guided radiotherapy (multivariate analysis hazard ratio [HR] 4·5 [95% CI 2·1-9·8]; p=0·00013; area under the receiver operator curve [AUC] 0·70 [95% CI 0·65-0·76]) and radical prostatectomy (4·0 [1·6-9·7]; p=0·0024; AUC 0·57 [0·52-0·61]) patients with prostate cancer, and its effect is magnified by intratumoral hypoxia (3·8 [1·2-12]; p=0·019; AUC 0·67 [0·61-0·73]). A novel 100-loci DNA signature accurately classified treatment outcome in the MSKCC low-risk to intermediate-risk cohort (multivariate analysis HR 6·1 [95% CI 2·0-19]; p=0·0015; AUC 0·74 [95% CI 0·65-0·83]). In the independent MSKCC and Cambridge cohorts, this signature identified low-risk to high-risk patients who were most likely to fail treatment within 18 months (combined cohorts multivariate analysis HR 2·9 [95% CI 1·4-6·0]; p=0·0039; AUC 0·68 [95% CI 0·63-0·73]), and was better at predicting biochemical relapse than 23 previously published RNA signatures. INTERPRETATION This is the first study of cancer outcome to integrate DNA-based and microenvironment-based failure indices to predict patient outcome. Patients exhibiting these aggressive features after biopsy should be entered into treatment intensification trials. FUNDING Movember Foundation, Prostate Cancer Canada, Ontario Institute for Cancer Research, Canadian Institute for Health Research, NIHR Cambridge Biomedical Research Centre, The University of Cambridge, Cancer Research UK, Cambridge Cancer Charity, Prostate Cancer UK, Hutchison Whampoa Limited, Terry Fox Research Institute, Princess Margaret Cancer Centre Foundation, PMH-Radiation Medicine Program Academic Enrichment Fund, Motorcycle Ride for Dad (Durham), Canadian Cancer Society.
Resumo:
The assessment of the thermal bioclimate is based on the human energy balance and derived indices such as Physiologically equivalent temperature (Pet) or Universal thermal Climate index (UtCi). These two indices were compared over a period often year based on hourly data in a middle european city with a temperate climate. The analysis performed shows that the differences obtained result from the different thermo-physiological settings of clothing insulation. For conditions with extremely high vapour pressure values, UtCi yields higher values than Pet, which could describe the thermo-physiological stress more appropriately.
Resumo:
Chrysophyte cysts are recognized as powerful proxies of cold-season temperatures. In this paper we use the relationship between chrysophyte assemblages and the number of days below 4 °C (DB4 °C) in the epilimnion of a lake in northern Poland to develop a transfer function and to reconstruct winter severity in Poland for the last millennium. DB4 °C is a climate variable related to the length of the winter. Multivariate ordination techniques were used to study the distribution of chrysophytes from sediment traps of 37 low-land lakes distributed along a variety of environmental and climatic gradients in northern Poland. Of all the environmental variables measured, stepwise variable selection and individual Redundancy analyses (RDA) identified DB4 °C as the most important variable for chrysophytes, explaining a portion of variance independent of variables related to water chemistry (conductivity, chlorides, K, sulfates), which were also important. A quantitative transfer function was created to estimate DB4 °C from sedimentary assemblages using partial least square regression (PLS). The two-component model (PLS-2) had a coefficient of determination of View the MathML sourceRcross2 = 0.58, with root mean squared error of prediction (RMSEP, based on leave-one-out) of 3.41 days. The resulting transfer function was applied to an annually-varved sediment core from Lake Żabińskie, providing a new sub-decadal quantitative reconstruction of DB4 °C with high chronological accuracy for the period AD 1000–2010. During Medieval Times (AD 1180–1440) winters were generally shorter (warmer) except for a decade with very long and severe winters around AD 1260–1270 (following the AD 1258 volcanic eruption). The 16th and 17th centuries and the beginning of the 19th century experienced very long severe winters. Comparison with other European cold-season reconstructions and atmospheric indices for this region indicates that large parts of the winter variability (reconstructed DB4 °C) is due to the interplay between the oscillations of the zonal flow controlled by the North Atlantic Oscillation (NAO) and the influence of continental anticyclonic systems (Siberian High, East Atlantic/Western Russia pattern). Differences with other European records are attributed to geographic climatological differences between Poland and Western Europe (Low Countries, Alps). Striking correspondence between the combined volcanic and solar forcing and the DB4 °C reconstruction prior to the 20th century suggests that winter climate in Poland responds mostly to natural forced variability (volcanic and solar) and the influence of unforced variability is low.
Resumo:
This study explores whether the high variability of vascular plant diversity among alpine plant communities can be explained by stress and/or disturbance intensities. Species numbers of 14 alpine plant communities were sampled in the Swiss Alps. To quantify the intensity of 13 stress and 6 disturbance factors potentially controlling plant life in these communities, a survey was conducted by asking numerous specialists in alpine vegetation to assess the importance of the different factors for each community. The estimated values were combined in stress- and disturbance-indices which were compared with diversity according to the Intermediate Stress Hypothesis, the Intermediate Disturbance Hypothesis, and the Dynamic Equilibrium Model, respectively. Each of these theories explained a part of the variability in the species richness, but only the Dynamic Equilibrium Model provided a complete and consistent explanation. The last model suggests that community species richness within the alpine life zone is generally controlled by stress intensity. Disturbance and competition seem to play a secondary role by fine-tuning diversity in specific communities. As diversity is primarily limited by stress, a moderation of temperature-related stress factors, as a result of global warming, may cause a shift of the equilibrium between stress, disturbance, and competition in alpine ecosystems.
Resumo:
Insulin is an important regulator of renal salt and water excretion, and hyperinsulinemia has been implicated to play a role in hypertension. One of the target proteins of insulin action in the kidney is Na(+)/H(+) exchanger 3 (NHE3), a principal Na(+) transporter responsible for salt absorption in the mammalian proximal tubule. The molecular mechanisms involved in activation of NHE3 by insulin have not been studied so far. In opossum kidney (OK) cells, insulin increased Na(+)/H(+) exchange activity in a time- and concentration-dependent manner. This effect is due to activation of NHE3 as it persisted after pharmacological inhibition of NHE1 and NHE2. In the early phase of stimulation (2-12 h), NHE3 activity was increased without changes in NHE3 protein and mRNA. At 24 h, enhanced NHE3 activity was accompanied by an increase in total and cell surface NHE3 protein and NHE3 mRNA abundance. All the effects of insulin on NHE3 activity, protein, and mRNA were amplified in the presence of hydrocortisone. These results suggest that insulin stimulates renal tubular NHE3 activity via a biphasic mechanism involving posttranslational factors and an increase in NHE3 gene expression and the effects are dependent on the permissive action of hydrocortisone.
Resumo:
INTRODUCTION Conventional 2-dimensional radiography uses defined criteria for outcome assessment of apical surgery. However, these radiographic healing criteria are not applicable for 3-dimensional radiography. The present study evaluated the repeatability and reproducibility of new cone-beam computed tomographic (CBCT)-based healing criteria for the judgment of periapical healing 1 year after apical surgery. METHODS CBCT scans taken 1 year after apical surgery (61 roots of 54 teeth in 54 patients, mean age = 54.4 years) were evaluated by 3 blinded and calibrated observers using 4 different indices. Reformatted buccolingual CBCT sections through the longitudinal axis of the treated roots were analyzed. Radiographic healing was assessed at the resection plane (R index), within the apical area (A index), of the cortical plate (C index), and regarding a combined apical-cortical area (B index). All readings were performed twice to calculate the intraobserver agreement (repeatability). Second-time readings were used for analyzing the interobserver agreement (reproducibility). Various statistical tests (Cohen, kappa, Fisher, and Spearman) were performed to measure the intra- and interobserver concurrence, the variability of score ratios, and the correlation of indices. RESULTS For all indices, the rates of identical first- and second-time scores were always higher than 80% (intraobserver Cohen κ values ranging from 0.793 to 0.963). The B index (94.0%) showed the highest intraobserver agreement. Regarding interobserver agreement, the highest rate was found for the B index (72.1%). The Fleiss' κ values for R and B indices exhibited substantial agreement (0.626 and 0.717, respectively), whereas the values for A and C indices showed moderate agreement (0.561 and 0.573, respectively). The Spearman correlation coefficients for R, A, C, and B indices all exhibited a moderate to very strong correlation with the highest correlation found between C and B indices (rs = 0.8069). CONCLUSIONS All indices showed an excellent intraobserver agreement (repeatability). With regard to interobserver agreement (reproducibility), the B index (healing of apical and cortical defects combined) and the R index (healing on the resection plane) showed substantial congruence and thus are to be recommended in future studies when using buccolingual CBCT sections for radiographic outcome assessment of apical surgery.
Resumo:
The vertebrate thyroid system is important for multiple developmental processes, including eye development. Thus, its environmentally induced disruption may impact important fitness-related parameters like visual capacities and behaviour. The present study investigated the relation between molecular effects of thyroid disruption and morphological and physiological changes of eye development in zebrafish (Danio rerio). Two test compounds representing different molecular modes of thyroid disruption were used: propylthiouracil (PTU), which is an enzyme-inhibitor of thyroid hormone synthesis, and tetrabromobisphenol A (TBBPA), which interacts with the thyroid hormone receptors. Both chemicals significantly altered transcript levels of thyroid system-related genes (TRα, TRβ, TPO, TSH, DIO1, DIO2 and DIO3) in a compound-specific way. Despite these different molecular response patterns, both treatments resulted in similar pathological alterations of the eyes such as reduced size, RPE cell diameter and pigmentation, which were concentration-dependent. The morphological changes translated into impaired visual performance of the larvae: the optokinetic response was significantly and concentration-dependently decreased in both treatments, together with a significant increase of light preference of PTU-treated larvae. In addition, swimming activity was impacted. This study provides first evidence that different modes of molecular action of the thyroid disruptors can be associated with uniform apical responses. Furthermore, this study is the first to show that pathological eye development, as it can be induced by exposure to thyroid disruptors, indeed translates into impaired visual capacities of zebrafish early life stages.
Resumo:
Land and water management in semi-arid regions requires detailed information on precipitation distribution, including extremes, and changes therein. Such information is often lacking. This paper describes statistics of mean and extreme precipitation in a unique data set from the Mount Kenya region, encompassing around 50 stations with at least 30 years of data. We describe the data set, including quality control procedures and statistical break detection. Trends in mean precipitation and extreme indices calculated from these data for individual rainy seasons are compared with corresponding trends in reanalysis products. From 1979 to 2011, mean precipitation decreased at 75% of the stations during the ‘long rains’ (March to May) and increased at 70% of the stations during the ‘short rains’ (October to December). Corresponding trends are found in the number of heavy precipitation days, and maximum of consecutive 5-day precipitation. Conversely, an increase in consecutive dry days within both main rainy seasons is found. However, trends are only statistically significant in very few cases. Reanalysis data sets agree with observations with respect to interannual variability, while correlations are considerably lower for monthly deviations (ratios) from the mean annual cycle. While some products well reproduce the rainfall climatology and some the spatial trend pattern, no product reproduces both.
Resumo:
The geologic history of the multi-ringed Argyre impact basin and surroundings has been reconstructed on the basis of geologic mapping and relative-age dating of rock materials and structures. The impact formed a primary basin, rim materials, and a complex basement structural fabric including faults and valleys that are radial and concentric about the primary basin, as well as structurally-controlled local basins. Since its formation, the basin has been a regional catchment for volatiles and sedimentary materials as well as a dominant influence on the flow of surface ice, debris flows, and groundwater through and over its basement structures. The basin is interpreted to have been occupied by lakes, including a possible Mediterranean-sized sea that formed in the aftermath of the Argyre impact event The hypothesized lakes froze and diminished through time, though liquid water may have remained beneath the ice cover and sedimentation may have continued for some time. At its deepest, the main Argyre lake may have taken more than a hundred thousand years to freeze to the bottom even absent any heat source besides the Sun, but with impact-induced hydrothermal heat, geothermal heat flow due to long-lived radioactivities in early martian history, and concentration of solutes in sub-ice brine, liquid water may have persisted beneath thick ice for many millions of years. Existence of an ice-covered sea perhaps was long enough for life to originate and evolve with gradually colder and more hypersaline conditions. The Argyre rock materials, diverse in origin and emplacement mechanisms, have been modified by impact, magmatic, eolian, fluvial, lacustrine, glacial, periglacial, alluvial, colluvial, and tectonic processes. Post-impact adjustment of part of the impact-generated basement structural fabric such as concentric faults is apparent. Distinct basin-stratigraphic units are interpreted to be linked to large-scale geologic activity far from the basin, including growth of the Tharsis magmatic-tectonic complex and the growth into southern middle latitudes of south polar ice sheets. Along with the migration of surface and sub-surface volatiles towards the central part of the primaiy basin, the substantial difference in elevation with respect to the surrounding highlands and Tharsis and the Thaumasia highlands result in the trapping of atmospheric volatiles within the basin in the form of fog and regional or local precipitation, even today. In addition, the impact event caused long-term (millions of years) hydrothermal activity, as well as deep-seated basement structures that have tapped the internal heat of Mars, as conduits, for far greater time, possibly even today. This possibility is raised by the observation of putative open-system pingos and nearby gullies that occur in linear depressions with accompanying systems of faults and fractures. Long-term water and heat energy enrichment, complemented by the interaction of the nutrient-enriched primordial crustal and mantle materials favorable to life excavated to the surface and near-surface environs through the Argyre impact event, has not only resulted in distinct geomorphology, but also makes the Argyre basin a potential site of exceptional astrobiological significance. (C) 2015 Elsevier Inc. All rights reserved.