30 resultados para gaseous
Resumo:
For more than 4 years, gaseous samples of 1-50 mu g carbon have been routinely measured with the gas ion source of the small AMS (Accelerator Mass Spectrometer) facility MICADAS (Mini CArbon DAting System) at ETH Zurich. The applied measurement technique offers a simple and fast way of C-14 measurements without the need of sample graphitization. A major drawback of gaseous C-14 measurements, however, is the relatively low negative ion current, which results in longer measurement times and lower precision compared to graphitized samples. In December 2009, a new, improved Cs sputter ion source was installed at MICADAS and we began to optimize conditions for the measurement of gaseous samples. C-12(-) currents from the new ion source were improved from initially 3 to 12-15 mu A for routine measurements and the negative ion yield was increased by a factor of 2, reaching 8 on average during routine operation. Moreover, the new measurement settings enable a doubled CO2 flow, thus substantially reducing measurement times. The achieved performance allows closing the sample size gap between gaseous and solid samples and makes the gas ion source a promising tool for dating with a measurement precision of 5 parts per thousand on samples as small as 50 mu g carbon. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Transport of volatile hydrocarbons in soils is largely controlled by interactions of vapours with the liquid and solid phase. Sorption on solids of gaseous or dissolved comPounds may be important. Since the contact time between a chemical and a specific sorption site can be rather short, kinetic or mass-transfer resistance effects may be relevant. An existing mathematical model describing advection and diffusion in the gas phase and diffusional transport from the gaseous phase into an intra-aggregate water phase is modified to include linear kinetic sorption on ps-solid and water-solid interfaces. The model accounts for kinetic mass transfer between all three phases in a soil. The solution of the Laplace-transformed equations is inverted numerically. We performed transient column experiments with 1,1,2-Trichloroethane, Trichloroethylene, and Tetrachloroethylene using air-dry solid and water-saturated porous glass beads. The breakthrough curves were calculated based on independently estimated parameters. The model calculations agree well with experimental data. The different transport behaviour of the three compounds in our system primarily depends on Henry's constants.
Resumo:
In many field or laboratory situations, well-mixed reservoirs like, for instance, injection or detection wells and gas distribution or sampling chambers define boundaries of transport domains. Exchange of solutes or gases across such boundaries can occur through advective or diffusive processes. First we analyzed situations, where the inlet region consists of a well-mixed reservoir, in a systematic way by interpreting them in terms of injection type. Second, we discussed the mass balance errors that seem to appear in case of resident injections. Mixing cells (MC) can be coupled mathematically in different ways to a domain where advective-dispersive transport occurs: by assuming a continuous solute flux at the interface (flux injection, MC-FI), or by assuming a continuous resident concentration (resident injection). In the latter case, the flux leaving the mixing cell can be defined in two ways: either as the value when the interface is approached from the mixing-cell side (MC-RT -), or as the value when it is approached from the column side (MC-RT +). Solutions of these injection types with constant or-in one case-distance-dependent transport parameters were compared to each other as well as to a solution of a two-layer system, where the first layer was characterized by a large dispersion coefficient. These solutions differ mainly at small Peclet numbers. For most real situations, the model for resident injection MC-RI + is considered to be relevant. This type of injection was modeled with a constant or with an exponentially varying dispersion coefficient within the porous medium. A constant dispersion coefficient will be appropriate for gases because of the Eulerian nature of the usually dominating gaseous diffusion coefficient, whereas the asymptotically growing dispersion coefficient will be more appropriate for solutes due to the Lagrangian nature of mechanical dispersion, which evolves only with the fluid flow. Assuming a continuous resident concentration at the interface between a mixing cell and a column, as in case of the MC-RI + model, entails a flux discontinuity. This flux discontinuity arises inherently from the definition of a mixing cell: the mixing process is included in the balance equation, but does not appear in the description of the flux through the mixing cell. There, only convection appears because of the homogeneous concentration within the mixing cell. Thus, the solute flux through a mixing cell in close contact with a transport domain is generally underestimated. This leads to (apparent) mass balance errors, which are often reported for similar situations and erroneously used to judge the validity of such models. Finally, the mixing cell model MC-RI + defines a universal basis regarding the type of solute injection at a boundary. Depending on the mixing cell parameters, it represents, in its limits, flux as well as resident injections. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Gas diffusion research in soils covers, to a large extent, the transport behavior of practically insoluble gases. We extend the mathematical description of gas transport to include reactive gaseous components that hydrolyze in water such as SO2 and CO2. The path between the free atmosphere and the microporous niches is modeled by assuming penetration through gas-filled macropores, air-water phase transfer, and diffusion and speciation in the liquid phase. For hydrolyzable gases, the rate of mass transfer into and the total absorption capacity of the soil solution may be high. Both the capacity and the transfer rate are influenced by the soil-solution pH; for high pH, they become extremely high for SO2. The soil absorption of such gases is also influenced by soil structure. Well-aerated, near-neutral soils are a potentially important sink for SO2.
Resumo:
A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 μm. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 μm that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO3, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 μm and an optical depth in the range 0.002-0.02 at 1 μm provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 μm, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 μm as well as longward of 8 μm, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.
Resumo:
A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO—the Exoplanet Characterisation Observatory—is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO’s configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region—from the visible to the mid-infrared—to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures T eq up to 2,000 K, to those of a few Earth masses, with T eq \u223c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0.4–16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to \u223c45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4–5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework.
Resumo:
29 parent- and alkyl-polycyclic aromatic hydrocarbons (PAHs), 15 oxygenated-PAHs (OPAHs), 11 nitrated-PAHs (NPAHs) and 4 azaarenes (AZAs) in both the gaseous and particulate phases, as well as the particulate-bound carbon fractions (organic carbon, elemental carbon, char, and soot) in ambient air sampled in March and September 2012 from an urban site in Xi'an, central China were extracted and analyzed. The average concentrations (gaseous+particulate) of 29PAHs, 15OPAHs, 11NPAHs and 4AZAs were 1267.0±307.5, 113.8±46.1, 11.8±4.8 and 26.5±11.8ngm(-3) in March and 784.7±165.1, 67.2±9.8, 9.0±1.5 and 21.6±5.1ngm(-3) in September, respectively. Concentrations of 29PAHs, 15OPAHs and 11NPAHs in particulates were significantly correlated with those of the carbon fractions (OC, EC, char and soot). Both absorption into organic matter in particles and adsorption onto the surface of particles were important for PAHs and OPAHs in both sampling periods, with more absorption occurring in September, while absorption was always the most important process for NPAHs. The total carcinogenic risk of PAHs plus the NPAHs was higher in March. Gaseous compounds, which were not considered in most previous studies, contributed 29 to 44% of the total health risk in March and September, respectively.
Resumo:
BACKGROUND Stroke is a major cause of morbidity and mortality during open-heart surgery. Up to 60% of intraoperative cerebral events are emboli induced. This randomized, controlled, multicenter trial is the first human study evaluating the safety and efficacy of a novel aortic cannula producing simultaneous forward flow and backward suction for extracting solid and gaseous emboli from the ascending aorta and aortic arch upon their intraoperative release. METHODS Sixty-six patients (25 females; 68±10 years) undergoing elective aortic valve replacement surgery, with or without coronary artery bypass graft surgery, were randomized to the use of the CardioGard (CardioGard Medical, Or-Yehuda, Israel) Emboli Protection cannula ("treatment") or a standard ("control") aortic cannula. The primary endpoint was the volume of new brain lesions measured by diffusion-weighted magnetic resonance imaging (DW-MRI), performed preoperatively and postoperatively. Device safety was investigated by comparisons of complications rate, namely neurologic events, stroke, renal insufficiency and death. RESULTS Of 66 patients (34 in the treatment group), 51 completed the presurgery and postsurgery MRI (27 in the treatment group). The volume of new brain lesion for the treatment group was (mean±standard error of the mean) 44.00±64.00 versus 126.56±28.74 mm3 in the control group (p=0.004). Of the treatment group, 41% demonstrated new postoperative lesions versus 66% in the control group (p=0.03). The complication rate was comparable in both groups. CONCLUSIONS The CardioGard cannula is safe and efficient in use during open-heart surgery. Efficacy was demonstrated by the removal of a substantial amount of emboli, a significant reduction in the volume of new brain lesions, and the percentage of patients experiencing new brain lesions.
Transcranial Doppler-guided deairing of a pediatric ventricular assist device: experience with twins
Resumo:
We report the intraoperative courses of 2 consecutive Berlin Heart Excor® Pediatric Ventricular Assist Device implantations, in which transcranial Doppler ultrasonography helped to detect macroscopically undetected residual air bubbles captured in the pump after air removal had been correctly performed according to manufacturer's specifications. Our experience with these cases suggests that a beat-to beat deairing maneuver guided by transcranial Doppler is a useful strategy for reducing cerebral exposure to perioperative gaseous microembolism.
Resumo:
The effect of long-term exposure to elevated pCO2 concentrations on sulfate and nitrate assimilation was studied under field conditions using leaves from Quercus ilex and Quercus pubescens trees growing with ambient or elevated CO2 concentrations in the vicinity of three natural CO2 springs, Bossoleto, Laiatico and Sulfatara, in Tuscany, Italy. The activity of the key enzymes of sulfate assimilation, adenosine 5′-phosphosulfate reductase (APR) and nitrate assimilation, nitrate reductase (NR), were measured together with the levels of acid soluble thiols, and soluble non-proteinogenic nitrogen compounds. Whereas NR activity remained unaffected in Q. ilex or increased Q. pubescence, APR activity decreased in the area of CO2 springs. The latter changes were often accompanied by increased GSH concentrations, apparently synthesized from H2S and SO2 present in the gas mixture emitted from the CO2 springs. Thus, the diminished APR activity in leaves of Q. ilex and Q. pubescence from spring areas can best be explained by the exposure to gaseous sulfur compounds. Although the concentrations of H2S and SO2 in the gas mixture emitted from the vents at the CO2 springs were low at the Bossoleto and Laiatico spring, these sulfur gases pose physiological effects, which may override consequences of elevated pCO2.
Resumo:
Context. Direct observations of gaseous exoplanets reveal that their gas envelope has a higher C/O ratio than that of the host star (e.g., Wasp 12-b). This has been explained by considering that the gas phase of the disc could be inhomogeneous, exceeding the stellar C/O ratio in regions where these planets formed; but few studies have considered the drift of the gas and planet migration. Aims. We aim to derive the gas composition in planets through planet formation to evaluate if the formation of giant planets with an enriched C/O ratio is possible. The study focusses on the effects of different processes on the C/O ratio, such as the disc evolution, the drift of gas, and planet migration. Methods. We used our previous models for computing the chemical composition, together with a planet formation model, to which we added the composition and drift of the gas phase of the disc, which is composed of the main volatile species H2O, CO, CO2, NH3, N2, CH3OH, CH4, and H2S, H2 and He. The study focusses on the region where ice lines are present and influence the C/O ratio of the planets. Results. Modelling shows that the condensation of volatile species as a function of radial distance allows for C/O enrichment in specific parts of the protoplanetary disc of up to four times the solar value. This leads to the formation of planets that can be enriched in C/O in their envelope up to three times the solar value. Planet migration, gas phase evolution and disc irradiation enables the evolution of the initial C/O ratio that decreases in the outer part of the disc and increases in the inner part of the disc. The total C/O ratio of the planets is governed by the contribution of ices accreted, suggesting that high C/O ratios measured in planetary atmospheres are indicative of a lack of exchange of material between the core of a planet and its envelope or an observational bias. It also suggests that the observed C/O ratio is not representative of the total C/O ratio of the planet.
Resumo:
The cometary coma is a unique phenomenon in the solar system being a planetary atmosphere influenced by little or no gravity. As a comet approaches the sun, the water vapor with some fraction of other gases sublimate, generating a cloud of gas, ice and other refractory materials (rocky and organic dust) ejected from the surface of the nucleus. Sublimating gas molecules undergo frequent collisions and photochemical processes in the near‐nucleus region. Owing to its negligible gravity, comets produce a large and highly variable extensive dusty coma with a size much larger than the characteristic size of the cometary nucleus. The Rosetta spacecraft is en route to comet 67P/Churyumov‐Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Both, interpretation of measurements and safety consideration of the spacecraft require modeling of the comet’s dusty gas environment. In this work we present results of a numerical study of multispecies gaseous and electrically charged dust environment of comet Chyuryumov‐Gerasimenko. Both, gas and dust phases of the coma are simulated kinetically. Photolytic reactions are taken into account. Parameters of the ambient plasma as well as the distribution of electric/magnetic fields are obtained from an MHD simulation [1] of the coma connected to the solar wind. Trajectories of ions and electrically charged dust grains are simulated by accounting for the Lorentz force and the nucleus gravity.
Resumo:
Comets often display narrow dust jets but more diffuse gas comae when their eccentric orbits bring them into the inner solar system and sunlight sublimates the ice on the nucleus. Comets are also understood to have one or more active areas covering only a fraction of the total surface active with sublimating volatile ices. Calculations of the gas and dust distribution from a small active area on a comet’s nucleus show that as the gas moves out radially into the vacuum of space it expands tangentially, filling much of the hemisphere centered on the active region. The dust dragged by the gas remains more concentrated over the active area. This explains some puzzling appearances of comets having collimated dust jets but more diffuse gaseous atmospheres. Our test case is 67P/Churyumov–Gerasimenko, the Rosetta mission target comet, whose activity is dominated by a single area covering only 4% of its surface.
Resumo:
Despite the strong increase in observational data on extrasolar planets, the processes that led to the formation of these planets are still not well understood. However, thanks to the high number of extrasolar planets that have been discovered, it is now possible to look at the planets as a population that puts statistical constraints on theoretical formation models. A method that uses these constraints is planetary population synthesis where synthetic planetary populations are generated and compared to the actual population. The key element of the population synthesis method is a global model of planet formation and evolution. These models directly predict observable planetary properties based on properties of the natal protoplanetary disc, linking two important classes of astrophysical objects. To do so, global models build on the simplified results of many specialized models that address one specific physical mechanism. We thoroughly review the physics of the sub-models included in global formation models. The sub-models can be classified as models describing the protoplanetary disc (of gas and solids), those that describe one (proto)planet (its solid core, gaseous envelope and atmosphere), and finally those that describe the interactions (orbital migration and N-body interaction). We compare the approaches taken in different global models, discuss the links between specialized and global models, and identify physical processes that require improved descriptions in future work. We then shortly address important results of planetary population synthesis like the planetary mass function or the mass-radius relationship. With these statistical results, the global effects of physical mechanisms occurring during planet formation and evolution become apparent, and specialized models describing them can be put to the observational test. Owing to their nature as meta models, global models depend on the results of specialized models, and therefore on the development of the field of planet formation theory as a whole. Because there are important uncertainties in this theory, it is likely that the global models will in future undergo significant modifications. Despite these limitations, global models can already now yield many testable predictions. With future global models addressing the geophysical characteristics of the synthetic planets, it should eventually become possible to make predictions about the habitability of planets based on their formation and evolution.
Resumo:
To compare intraoperative cerebral microembolic load between minimally invasive extracorporeal circulation (MiECC) and conventional extracorporeal circulation (CECC) during isolated surgical aortic valve replacement (SAVR), we conducted a randomized trial in patients undergoing primary elective SAVR at a tertiary referral hospital. The primary outcome was the procedural phase-related rate of high-intensity transient signals (HITS) on transcranial Doppler ultrasound. HITS rate was used as a surrogate of cerebral microembolism in pre-defined procedural phases in SAVR using MiECC or CECC with (+F) or without (-F) an oxygenator with integrated arterial filter. Forty-eight patients were randomized in a 1:1 ratio to MiECC or CECC. Due to intraprocedural Doppler signal loss (n = 3), 45 patients were included in final analysis. MiECC perfusion regimen showed a significantly increased HITS rate compared to CECC (by a factor of 1.75; 95% confidence interval, 1.19-2.56). This was due to different HITS rates in procedural phases from aortic cross-clamping until declamping [phase 4] (P = 0.01), and from aortic declamping until stop of extracorporeal perfusion [phase 5] (P = 0.05). Post hoc analysis revealed that MiECC-F generated a higher HITS rate than CECC+F (P = 0.005), CECC-F (P = 0.05) in phase 4, and CECC-F (P = 0.03) in phase 5, respectively. In open-heart surgery, MiECC is not superior to CECC with regard to gaseous cerebral microembolism. When using MiECC for SAVR, the use of oxygenators with integrated arterial line filter appears highly advisable. Only with this precaution, MiECC confers a cerebral microembolic load comparable to CECC during this type of open heart surgery.