51 resultados para feature advertising
Resumo:
In most Asian subjects with postural proteinuria, ultrasonic imaging and Doppler flow scanning disclose entrapment of the left renal vein in the fork between the aorta and the superior mesenteric artery. Little information is available on the possible occurrence of left venal rein entrapment in European subjects with postural proteinuria. Renal ultrasound with Doppler flow imaging was therefore performed on 24 Italian or Swiss patients with postural proteinuria (14 girls and ten boys, aged between 5.2 years and 16 years). Signs of aorto-mesenteric left renal vein entrapment were noted in 18 of the 24 subjects. In conclusion, aorto-mesenteric left renal vein entrapment is common also among European subjects with postural proteinuria.
Resumo:
The aim of the present study is to define an optimally performing computer-aided diagnosis (CAD) architecture for the classification of liver tissue from non-enhanced computed tomography (CT) images into normal liver (C1), hepatic cyst (C2), hemangioma (C3), and hepatocellular carcinoma (C4). To this end, various CAD architectures, based on texture features and ensembles of classifiers (ECs), are comparatively assessed.
Resumo:
Breaking synoptic-scale Rossby waves (RWB) at the tropopause level are central to the daily weather evolution in the extratropics and the subtropics. RWB leads to pronounced meridional transport of heat, moisture, momentum, and chemical constituents. RWB events are manifest as elongated and narrow structures in the tropopause-level potential vorticity (PV) field. A feature-based validation approach is used to assess the representation of Northern Hemisphere RWB in present-day climate simulations carried out with the ECHAM5-HAM climate model at three different resolutions (T42L19, T63L31, and T106L31) against the ERA-40 reanalysis data set. An objective identification algorithm extracts RWB events from the isentropic PV field and allows quantifying the frequency of occurrence of RWB. The biases in the frequency of RWB are then compared to biases in the time mean tropopause-level jet wind speeds. The ECHAM5-HAM model captures the location of the RWB frequency maxima in the Northern Hemisphere at all three resolutions. However, at coarse resolution (T42L19) the overall frequency of RWB, i.e. the frequency averaged over all seasons and the entire hemisphere, is underestimated by 28%.The higher-resolution simulations capture the overall frequency of RWB much better, with a minor difference between T63L31 and T106L31 (frequency errors of −3.5 and 6%, respectively). The number of large-size RWB events is significantly underestimated by the T42L19 experiment and well represented in the T106L31 simulation. On the local scale, however, significant differences to ERA-40 are found in the higher-resolution simulations. These differences are regionally confined and vary with the season. The most striking difference between T106L31 and ERA-40 is that ECHAM5-HAM overestimates the frequency of RWB in the subtropical Atlantic in all seasons except for spring. This bias maximum is accompanied by an equatorward extension of the subtropical westerlies.
Resumo:
We propose a method that robustly combines color and feature buffers to denoise Monte Carlo renderings. On one hand, feature buffers, such as per pixel normals, textures, or depth, are effective in determining denoising filters because features are highly correlated with rendered images. Filters based solely on features, however, are prone to blurring image details that are not well represented by the features. On the other hand, color buffers represent all details, but they may be less effective to determine filters because they are contaminated by the noise that is supposed to be removed. We propose to obtain filters using a combination of color and feature buffers in an NL-means and cross-bilateral filtering framework. We determine a robust weighting of colors and features using a SURE-based error estimate. We show significant improvements in subjective and quantitative errors compared to the previous state-of-the-art. We also demonstrate adaptive sampling and space-time filtering for animations.