23 resultados para extinction coefficient


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the momentum diffusion coefficient for heavy quarks in SU(3) gluon plasma at temperatures 1-2 times the deconfinement temperature. The momentum diffusion coefficient is extracted from a Monte Carlo calculation of the correlation function of color electric fields, in the leading order of expansion in heavy quark mass. Systematics of the calculation are examined, and compared with perturbtion theory and other estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analytic continuation needed for the extraction of transport coefficients necessitates in principle a continuous function of the Euclidean time variable. We report on progress towards achieving the continuum limit for 2-point correlator measurements in thermal SU(3) gauge theory, with specific attention paid to scale setting. In particular, we improve upon the determination of the critical lattice coupling and the critical temperature of pure SU(3) gauge theory, estimating r0Tc ≃ 0.7470(7) after a continuum extrapolation. As an application the determination of the heavy quark momentum diffusion coefficient from a correlator of colour-electric fields attached to a Polyakov loop is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A higher risk of future range losses as a result of climate change is expected to be one of the main drivers of extinction trends in vascular plants occurring in habitat types of high conservation value. Nevertheless, the impact of the climate changes of the last 60 years on the current distribution and extinction patterns of plants is still largely unclear. We applied species distribution models to study the impact of environmental variables (climate, soil conditions, land cover, topography), on the current distribution of 18 vascular plant species characteristic of three threatened habitat types in southern Germany: (i) xero-thermophilous vegetation, (ii) mesophilous mountain grasslands (mountain hay meadows and matgrass communities), and (iii) wetland habitats (bogs, fens, and wet meadows). Climate and soil variables were the most important variables affecting plant distributions at a spatial level of 10 × 10 km. Extinction trends in our study area revealed that plant species which occur in wetland habitats faced higher extinction risks than those in xero-thermophilous vegetation, with the risk for species in mesophilous mountain grasslands being intermediary. For three plant species characteristic either of mesophilous mountain grasslands or wetland habitats we showed exemplarily that extinctions from 1950 to the present day have occurred at the edge of the species’ current climatic niche, indicating that climate change has likely been the main driver of extinction. This is largely consistent with current extinction trends reported in other studies. Our study indicates that the analysis of past extinctions is an appropriate means to assess the impact of climate change on species and that vulnerability to climate change is both species- and habitat-specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary innovations, traits that give species access to previously unoccupied niches, may promote speciation and adaptive radiation. Here, we show that such innovations can also result in competitive inferiority and extinction. We present evidence that the modified pharyngeal jaws of cichlid fishes and several marine fish lineages, a classic example of evolutionary innovation, are not universally beneficial. A large-scale analysis of dietary evolution across marine fish lineages reveals that the innovation compromises access to energy-rich predator niches. We show that this competitive inferiority shaped the adaptive radiation of cichlids in Lake Tanganyika and played a pivotal and previously unrecognized role in the mass extinction of cichlid fishes in Lake Victoria after Nile perch invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We estimate the momentum diffusion coefficient of a heavy quark within a pure SU(3) plasma at a temperature of about 1.5Tc. Large-scale Monte Carlo simulations on a series of lattices extending up to 1923×48 permit us to carry out a continuum extrapolation of the so-called color-electric imaginary-time correlator. The extrapolated correlator is analyzed with the help of theoretically motivated models for the corresponding spectral function. Evidence for a nonzero transport coefficient is found and, incorporating systematic uncertainties reflecting model assumptions, we obtain κ=(1.8–3.4)T3. This implies that the “drag coefficient,” characterizing the time scale at which heavy quarks adjust to hydrodynamic flow, is η−1D=(1.8–3.4)(Tc/T)2(M/1.5  GeV)  fm/c, where M is the heavy quark kinetic mass. The results apply to bottom and, with somewhat larger systematic uncertainties, to charm quarks.